
Math 12 Helpful Sequence Tips and Facts
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n → 0 as n → ∞

1 if r = 1 think 1n → 1 as n → ∞

Diverges if |r| > 1 think

{

7n → ∞ as n → ∞
(−7)n diverges as n → ∞

Diverges if r = −1 think (−1)n diverges as n → ∞



A helpful and general summary is, as n → ∞,
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represents the notion of being much smaller in size. That is, as n grows large, size-wise,
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Proof of a few facts:
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Some Natural Log Tips

• Fix r > 0, to show lim
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That is, lnn grows slower than any positive power of n, as n goes to infinity. This
fact will be most helpful in the future, when we need to bound lnn by a power of n. For
n large, we can use any of the following bounds, (whichever ends up being the most helpful
power)
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Ideally, you are just grabbing a bound for lnn with enough powers of n, so that after dividing
by some denominator containing powers of n, you are left with powers of n still in the
denominator, and hence will shoot to 0, as n shoots to infinity.
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? We will see how the

second bound might be more helpful, when we study series in more detail.


