Math 12 Helpful Sequence Tips and Facts

$$
\bullet \ \lim_{n \to \infty} \frac{\ln n}{n} = 0
$$

•
$$
\lim_{n \to \infty} \frac{\ln n}{n^r} = 0 \quad \text{for } r > 0
$$

•
$$
\lim_{n \to \infty} n^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{n} = 1
$$

- $\lim_{n \to \infty} x^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{x} = 1$ for a fixed constant number x
- $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)$ n $\bigg)^n = e$

•
$$
\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x
$$
 for a fixed constant number x

- $\lim_{n\to\infty}\frac{n!}{n^n}$ $\frac{1}{n^2} = 0$
- $\lim_{n\to\infty}\frac{x^n}{n^n}$ $\frac{x}{n^n} = 0$ for a fixed constant number x
- $\lim_{n\to\infty}\frac{e^n}{n^r}$ $\frac{\partial}{\partial r} = \infty$ for some fixed power $r > 0$

$$
\bullet \lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } |r| < 1 \\ 1 & \text{if } r = 1 \\ \text{Diverges if } |r| > 1 \\ \text{Diverges if } |r| > 1 \end{cases} \quad \text{think } \left\{ \begin{array}{ll} 7^n \to \infty & \text{as } n \to \infty \\ (-7)^n \text{ diverges} & \text{as } n \to \infty \end{array} \right.
$$
\n
$$
\bullet \lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } r = 1 \\ 1 & \text{think } \left\{ \begin{array}{ll} 7^n \to \infty & \text{as } n \to \infty \\ (-7)^n \text{ diverges} & \text{as } n \to \infty \end{array} \right.
$$

A helpful and general summary is, as $n \to \infty$,

$$
\boxed{\ln n \quad \langle \langle n^r \quad (r > 0) \quad \langle \langle a^n \quad (a > 1) \quad \langle \langle n! \quad n^n \quad (a > n) \rangle \rangle}.
$$

Here $\langle \langle \rangle$ represents the notion of being much smaller in size. That is, as n grows large, size-wise,

Proof of a few facts:

• To prove $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$, we consider the related function $f(x) = x^{\frac{1}{x}}$, in order to apply L'H Rule. Then

$$
\lim_{x \to \infty} x^{\frac{1}{x}} = \lim_{x \to \infty} e^{\ln\left(x^{\frac{1}{x}}\right)} = e^{\left(\lim_{x \to \infty} \ln\left(x^{\frac{1}{x}}\right)\right)} = e^{\left(\lim_{x \to \infty} \frac{\ln x}{x}\right)^{\left(\frac{\infty}{\infty}\right)}} \xrightarrow{\mathrm{L'}\mathrm{H}} e^{\left(\lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)}{1}\right)} = e^0 = 1
$$

• To prove $\lim_{n\to\infty} x^{\frac{1}{n}} = 1$, we consider the related function $f(t) = x^{\frac{1}{t}}$. For a fixed x, note that $\ln x$ is a fixed constant. Then,

$$
\lim_{t \to \infty} x^{\frac{1}{t}} = \lim_{t \to \infty} e^{\ln\left(x^{\frac{1}{t}}\right)} = e^{\left(\lim_{t \to \infty} \ln\left(x^{\frac{1}{t}}\right)\right)} = e^{\left(\lim_{t \to \infty} \frac{\ln x}{t}\right)} = e^0 = 1
$$

- To prove $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)$ n $\bigg\}^n = e$, we consider the related function $f(x) = \bigg(1 + \frac{1}{x}\bigg)$ \boldsymbol{x} $\Big)^x$. Then, $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)$ \boldsymbol{x} \setminus^x $=\lim_{x\to\infty}e$ $\ln\left(1+\frac{1}{2}\right)$ \boldsymbol{x} \setminus^x $= e$ $\left(\lim_{x\to\infty}\ln\left(1+\frac{1}{x}\right)\right)$ \boldsymbol{x} $\langle x \rangle$ \int = e $\left(\lim_{x\to\infty}x\ln\left(1+\frac{1}{x}\right)\right)$ \boldsymbol{x} \setminus A $\stackrel{\infty.0}{=} e$ $\sqrt{2}$ $\lim_{x\to\infty}$ $\ln\left(1+\frac{1}{2}\right)$ \boldsymbol{x} \setminus $\frac{1}{x}$ \setminus $\begin{matrix} \end{matrix}$ $\left(\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right)$ $\stackrel{\text{L'H}}{=} e$ $\sqrt{2}$ $\overline{}$ $\lim_{x\to\infty}$ 1 $\frac{1}{1 + \frac{1}{1}}$ \overline{x} · $\sqrt{2}$ − 1 x^2 \setminus − 1 x^2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array}$ $= e$ $\sqrt{2}$ $\lim_{x\to\infty}\frac{1}{1+}$ $\frac{1}{1 + \frac{1}{1}}$ \boldsymbol{x} 1 $\Bigg\}$ $= e^1 = e$
- To prove $\lim_{n\to\infty}\left(1+\frac{x}{n}\right)$ n $\int_{0}^{n} = e^{x}$, we consider the related function $f(t) = \left(1 + \frac{x}{t}\right)$ t $\big)^t$, for a fixed number x . Then,

$$
\lim_{t \to \infty} \left(1 + \frac{x}{t}\right)^t = \lim_{t \to \infty} e^{\ln\left(1 + \frac{x}{t}\right)^t} = e^{\left(\lim_{t \to \infty} \ln\left(1 + \frac{x}{t}\right)^t\right)} = e^{\left(\lim_{t \to \infty} t \ln\left(1 + \frac{x}{t}\right)\right)}
$$

$$
= \sum_{\substack{\infty \text{ odd}}} \left(\lim_{t \to \infty} \frac{\ln\left(1 + \frac{x}{t}\right)}{\frac{1}{t}} \right) \lim_{\substack{\text{L'H} \\ \infty}} \left(\lim_{t \to \infty} \frac{\frac{1}{1 + \frac{x}{t}} \cdot \left(-\frac{x}{t^2}\right)}{-\frac{1}{t^2}} \right) = e^{\left(\lim_{t \to \infty} \frac{x}{1 + \frac{x}{t}}\right)} = e^x
$$

• To prove $\lim_{n\to\infty}\frac{n!}{n^n}$ $\frac{n!}{n^n} = 0$, we work to find a bound on $\frac{n!}{n^n}$ for *n* large.

$$
\frac{n!}{n^n} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \ldots \cdot 4 \cdot 3 \cdot 2 \cdot 1}{n \cdot n \cdot n \cdot n \cdot \ldots \cdot n \cdot n \cdot n}
$$
\n
$$
= \left(\frac{n}{n}\right) \left(\frac{n-1}{n}\right) \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n}\right) \ldots \left(\frac{4}{n}\right) \left(\frac{3}{n}\right) \left(\frac{2}{n}\right) \frac{1}{n}
$$
\n
$$
\leq 1 \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot 1 \cdot 1 \cdot \frac{1}{n}
$$
\n
$$
= \boxed{\frac{1}{n}}
$$

Since $\frac{1}{n}$ shoots to 0 as *n* marches to infinity, the smaller terms $\frac{n!}{n^n}$ must also approach 0. Question: Can you find a more helpful bound for the future? Can you bound $\frac{n!}{n^n}$ by $\frac{1}{n^2}$?

• To prove
$$
\lim_{n \to \infty} \frac{4^n}{n!} = 0
$$
, we work to find a bound on $\frac{4^n}{n!}$ for *n* large.
\n
$$
\frac{4^n}{n!} = \frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \ldots \cdot 4 \cdot 3 \cdot 2 \cdot 1}
$$
\n
$$
= \left[\frac{4}{n} \right] \left(\frac{4}{n-1} \right) \left(\frac{4}{n-2} \right) \left(\frac{4}{n-3} \right) \ldots \left(\frac{4}{4} \right) \left(\frac{4}{3} \right) \left(\frac{4}{2} \right) \left(\frac{4}{1} \right)
$$
\n
$$
\leq \left[\frac{4}{n} \right] \cdot 1 \cdot 1 \cdot 1 \cdot \ldots \cdot \left(\frac{4}{3} \right) \cdot \left(\frac{4}{2} \right) \cdot \left(\frac{4}{1} \right)
$$
\n
$$
= \frac{4^4}{6} \cdot \left[\frac{1}{n} \right]
$$

Again, since $\frac{1}{n}$ shoots to 0 as n marches to infinity, the smaller terms $\frac{4^n}{n!}$ $\frac{1}{n!}$ must also approach 0. Question: Can you find a more helpful bound for the future? Can you bound $\frac{4^n}{n!}$ by n $c\left(\frac{4}{5}\right)$ 5 $\bigg)^{n-4}$?

Some Natural Log Tips

• Fix $r > 0$, to show $\lim_{n \to \infty} \frac{\ln n}{n^r}$ $\overline{n^r}$ $\left(\frac{\infty}{\infty}\right)$ = 0 we consider the related function $f(x) = \frac{\ln x}{x^r}$ and apply L'H Rule.

$$
\lim_{x \to \infty} \frac{\ln x}{x^r} \stackrel{\left(\infty}{\sim} \right)}{\equiv} \lim_{x \to \infty} \frac{\frac{1}{x}}{rx^{r-1}} = \lim_{x \to \infty} \frac{1}{rx^{r-1}x} = \lim_{x \to \infty} \frac{1}{rx^{r-1+1}} = \lim_{x \to \infty} \frac{1}{rx^r} = 0
$$

That is, $\ln n$ grows slower than any positive power of n, as n goes to infinity. This fact will be most helpful in the future, when we need to bound $\ln n$ by a power of n. For n large, we can use any of the following bounds, (whichever ends up being the most helpful power)

$$
\ln n \le n \qquad \ln n \le \sqrt{n} \qquad \ln n \le n^{\frac{1}{4}} \qquad \dots \qquad \text{for } n \text{ large}
$$

The first two are true for all $n \geq 1$. For instance, you might want to show that the sequence \int ln n n converges to 0, using the Squeeze Theorem. (How else could you show it?) Since $\ln n \ge 1$ for $n > e$, we can't show that $\frac{\ln n}{n} \le$ 1 $\frac{1}{n}$, but we can show that $\frac{\ln n}{n} \leq$ 1 $\frac{1}{\sqrt{n}}$. When that is true, we apply the Squeeze Theorem,

$$
0 \leq \frac{\ln n}{n} \leq \frac{1}{\sqrt{n}}
$$

0

Here $\frac{1}{\sqrt{n}} \to 0$ as $n \to \infty$. As a result, the middle term is forced to approach 0. Now let's convince ourselves that $\frac{\ln n}{n} \leq$ 1 $\frac{1}{\sqrt{n}}$. First note that from above, for *n* large, $\ln n \leq \sqrt{n}$ which implies that $\frac{\ln n}{n} \leq$ \sqrt{n} $\sqrt{\frac{n}{n}}$, and in turn $\frac{\ln n}{n} \leq$ 1 $\frac{1}{\sqrt{n}}$.

Ideally, you are just grabbing a bound for $\ln n$ with enough powers of n, so that after dividing by some denominator containing powers of n , you are left with powers of n still in the denominator, and hence will shoot to 0, as n shoots to infinity.

For example, to bound $\frac{\ln n}{n^3}$, that's easy, just bound $\ln n \leq n$, and the quotient $\frac{\ln n}{n^3} \leq$ n $\overline{n^3}$ \geq 1 $\frac{1}{n^2}$ and $\frac{1}{n^2}$ shoots to 0 as a helpful upper bound.

Then to bound, say, $\frac{\ln n}{\sqrt{n}}$, we could use the bound $\ln n \leq n^{\frac{1}{4}}$. Then, $\frac{\ln n}{\sqrt{n}} \leq$ $n^{\frac{1}{4}}$ $\frac{n^{\frac{1}{4}}}{\sqrt{n}} = \frac{1}{n^{\frac{1}{4}}}$ $\frac{1}{n^{\frac{1}{4}}}.$

Similarly, you can bound $\frac{\ln n}{n^2} \leq$ 1 $\frac{1}{n}$, but can you bound $\frac{\ln n}{n^2} \leq$ 1 $\frac{1}{n^{\frac{3}{2}}}$? We will see how the second bound might be more helpful, when we study series in more detail.