Math 12 Helpful Sequence Tips and Facts
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A helpful and general summary is, as n — 0o,
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Here << represents the notion of being much smaller in size. That is, as n grows large, size-wise,

logs < < ploynomials < < exponentials < < factorials < < ”super” exponentials

Proof of a few facts:

e To prove lim nw = 1, we consider the related function f(x) = azi, in order to apply L'H
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e To prove lim o = 1, we consider the related function f(t) = 27. For a fixed x, note that
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e To prove lim (1 + ) = e, we consider the related function f(z) = <1 + > . Then,
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e To prove lim (1 + E) = e, we consider the related function f(t) = (1 + %) , for a fixed
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e To prove lim — = 0, we work to find a bound on — for n large.
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Since — shoots to 0 as n marches to infinity, the smaller terms — must also approach 0.
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Question: Can you find a more helpful bound for the future? Can you bound % by ﬁ?
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e To prove lim — = 0, we work to find a bound on — for n large.
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Some Natural Log Tips
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e Fix 7 >0, to show lim —- = 0 we consider the related function f(z) = —— and apply
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That is, Inn grows slower than any positive power of n, as n goes to infinity. This
fact will be most helpful in the future, when we need to bound Inn by a power of n. For
n large, we can use any of the following bounds, (whichever ends up being the most helpful
power)

Inn<n Inn <\/n lnngn% for n large

The first two are true for all n > 1. For instance, you might want to show that the sequence
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that is true, we apply the Squeeze Theorem,
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Here T — 0 as n — oco. As a result, the middle term is forced to approach 0. Now let’s
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Ideally, you are just grabbing a bound for Inn with enough powers of n, so that after dividing
by some denominator containing powers of n, you are left with powers of n still in the
denominator, and hence will shoot to 0, as n shoots to infinity.
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Similarly, you can bound H—Qn < —, but can you bound n—2n < —7 We will see how the
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second bound might be more helpful, when we study series in more detail.



