
Math 12 Helpful Sequence and Series Information

Please find below some definitions and tips for sequences and series. We will pay careful attention
to what they are, how they are defined, how to decide convergence of each, as well as how they are
related. We will also list a few classic examples of series. Please see the other class handout, for a
list of convergence tests for series.

• Sequences

Definition: An infinite sequence of real numbers is an ordered, unending list of numbers.

a1, a2, a3, a4, . . . , an−1, an, an+1, . . .

It can be difficult to represent an infinite list of numbers, so we abbreviate the sequence terms with
a concise notation. Here n is an integer counter for the terms.

{an}
∞
n=1 or {an}

∞
1 or {an}n≥1 or even {an} for short

Think of the terms of a sequence as defined by a single, related function where the terms an = f(n).
Essentially, we have a formula for the terms of the sequence. The terms of the sequence can be
represented as output plot points on the graph of f(x), when you restrict the domain of f to a
domain of positive integers n. Below f(x) is drawn as the curve, and the dots are the sequence
terms plotted along this curve. Since the sequence terms lie along the curve f(x), it makes sense
that the behavior of the sequence terms might be related to the behavior of the function.
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Many questions arise:

• Does a list of numbers approach a fixed number or limit L?

• Not only does the list get close to a limit L, but does it remain close to L?

• If some limit L exists, how do we compute that number L?
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We have several methods for computing limits of sequences.

• Method 1: ε − N Proofs

Definition: We say the sequence {an} converges to a real number L, or has the limit L,

and we write lim
n→∞

an = L provided an can be made as close to L as we please, merely by

choosing n to be sufficiently large. That is, given any ε > 0, there exists an integer N such
that |an − L| < ε for all n ≥ N .

Note: if the sequence {an} does not converge, then we say it diverges.

As with Math 11 ε − δ proofs, these proofs are challenging. The good news is that we have
enough ammunition from Calculus 1 limits, and we can avoid dealing with these proofs.

• Method 2: Function Relationship

Theorem: Given a sequence {an}, if there is related function f(x) so that the terms of our
sequence an = f(n) and if lim

x→∞
f(x) = L, then lim

n→∞
an = L

Here we can use all of our previous limit techniques for functions. Please note that if you are
going to apply L’H Rule, then technically you must really step aside and look at the related
function f of x, since L’H Rule is not stated for terms of sequences.

Caution: If an = f(n) and lim
x→∞

f(x) diverges, it does not necessarily mean that {an} diverges.

Can you think of a graph example? Try a function that oscillates.

Example: Does the sequence

{

(lnn)2

n

}∞

n=1

converge?

To answer this question, we need to step aside to the related function f(x) =
(lnx)2

x
. Note

lim
x→∞

(lnx)2

x

(∞

∞
)

L′H
= lim

x→∞

2 lnx · 1
x

1
= 2 lim

x→∞

lnx

x

∞

∞ L′H
= 2 lim

x→∞

1
x

1
= 0

Finally, since lim
x→∞

(lnx)2

x
= 0, then our theorem yields lim

x→∞

(lnn)2

n
= 0, and therefore the

original sequence converges to 0.

Example: Does the sequence

{(

n

n + 1

)n}∞

n=1

converge?

To answer this question, we need the related function f(x) =

(

x

x + 1

)x

. Note

lim
x→∞

(

x

x + 1

)x(1∞)

= lim
x→∞

e
ln

„ x

x + 1

«

x

= e
lim

x→∞
x ln

(

x

x + 1

)

= e

lim
x→∞

ln

(

x

x + 1

)

1
x

L′H
= e

lim
x→∞

(

x+1
x

)

·
(

(x+1)(1)−x(1)
(x+1)2

)

− 1
x2 = e

lim
x→∞

(

x+1
x

)

·
(

1
(x+1)2

)

− 1
x2 = e

lim
x→∞

−x

x + 1 = e−1 =
1

e
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Finally, since lim
x→∞

(

x

x + 1

)x

=
1

e
, then our theorem yields lim

n→∞

(

n

n + 1

)n

=
1

e
, and there-

fore the original sequence converges to
1

e
.

• Method 3: Limit Laws for Sequences

If {an} and {bn} are both convergent sequences and c is a constant, then

1. lim
n→∞

an + bn = lim
n→∞

an + lim
n→∞

bn

2. lim
n→∞

an − bn = lim
n→∞

an − lim
n→∞

bn

3. lim
n→∞

can = c lim
n→∞

an

4. lim
n→∞

c = c

5. lim
n→∞

an · bn = lim
n→∞

an · lim
n→∞

bn

6. lim
n→∞

an

bn

=
lim

n→∞
an

lim
n→∞

bn

provided the denominator limit is non-zero.

7. lim
n→∞

ap
n =

(

lim
n→∞

an

)p

if p > 0 and an > 0

Example: The sequence

{

n3

7n3 + 1

}

converges to
1

7
since, using the Limit Laws,

lim
n→∞

n3

7n3 + 1
= lim

n→∞

n3

7n3 + 1
·

(

1
n3

)

(

1
n3

) = lim
n→∞

1

7 + 1
n3

L.L.
=

lim
n→∞

1

lim
n→∞

7 +
lim

n→∞
1

lim
n→∞

n3

=
1

7

Sometimes it is difficult to convert your sequence terms to a helpful related function, but it is
easier to find a useful bound or make a size argument. The following theorem is also known
as the Squeeze Law, Sandwich Theorem, or even the Pinching Theorem.

• Method 4: Squeeze Theorem

If {an}, {bn}, {cn} are sequences satisfying the following:


























for all n ≥ N0 we have an ≤ bn ≤ cn for some N0

and

lim
n→∞

an = lim
n→∞

cn = L



























then lim
n→∞

bn = L.
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This fact makes sense. If the terms are eventually ordered, and the smallest and largest terms
are approaching the same limit, then obviously the middle term, squished between those two
terms, must approach the same limit. This rule is helpful when L = 0.

an ≤ bn ≤ cn

ց ↓ ւ as n → ∞
L

The Squeeze Law is good for terms with a bounded piece like sinn, cos2 n or even arctan n.

See other class handout about sequences, to study the bounded arguments for terms like
n!

nn
.

Example: Does the sequence

{

arctann

n3

}∞

n=1

converge?

First note that, for each n, the terms
arctan n

n3
are bounded both above and below. Each of

those bounding terms shoot to 0 as n blows up to infinity. Therefore the terms bounded in
the middle must also shoot to 0, by the Squeeze Law.

0 ≤
arctan n

n3
≤

π

2n3

ց ↓ ւ as n → ∞
0

• Method 5: Passing limits past continuous functions (to hit internal terms directly)

Theorem: If lim
n→∞

an = L, and f is continuous at L, then lim
n→∞

f(an) = f( lim
n→∞

an) = f(L).

Example: Does
{

e
1

n
2

}∞

n=1
converge? It does converge, to 1, since after passing the limit

past the continuous exponential function, we have

lim
n→∞

e
1

n
2 = e

 

lim
n→∞

1

n2

!

L.L.
= e

0

B

@

lim
n→∞

1

lim
n→∞

n2

1

C

A

= e0 = 1.

Theorem: If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Bounded Monotonic Sequence Property: This is used to prove several of our future conver-
gence results/tests.

Theorem: Every bounded, monotonic sequence converges.

Caution: This fact does not tell you what the limit is, but it is less than the bound.
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• Series

Definition: A series

∞
∑

n=1

an is an infinite sum of numbers

a1 + a2 + a3 + . . . + an−1 + an + an+1 + . . .

Here the counter index n is just a “dummy” variable that helps you keep track of the terms of the

series. Notationally we have
∞

∑

n=1

an =
∞

∑

j=1

aj =
∞

∑

i=1

ai =
∞

∑

k=1

ak. For each integer k, say, you get a

term ak, as the integer k ranges from 1 to ∞.

Many questions arise:

• Does it make sense to add up infinitely many numbers? How?

• Does that sum equal a finite number?

• If it exists, can we find the actual finite sum for a given series?

The third question turns out to be very difficult to answer for most series. To answer the first
questions, we will use our traditional calculus approach of making a finite approximation to the
item at hand, and then throw in a limit. To get a sense of this sum of infinitely many terms, let’s
examine a few finite sums of the first few terms of the series.

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...
Sn = a1 + a2 + a3 + . . . + an−1 + an

Each finite sum above is obviously some finite number. Note that these finite approximating sums
create a list of numbers (a sequence). What happens to this list as you add on more and more
terms (i.e. let the number of terms, n, march to infinity)?
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Definition:

• Given a series
∞

∑

n=1

an, define the nth Partial Sum as the sum of the first n terms,

Sn = a1 + a2 + a3 + . . . + an−1 + an

=
n

∑

i=1

ai

.

• If the sequence {Sn}n≥1 of partial sums converges with lim
n→∞

Sn = L, we say the series
∞

∑

n=1

an

converges with sum L. We write
∞

∑

n=1

an = L. That is,

∞
∑

n=1

an = lim
n→∞

Sn

• If the sequence {Sn}n≥1 of partial sums diverges, we say the series
∞

∑

n=1

an diverges. This

could happen when lim
n→∞

Sn = ±∞ or Does Not Exist.

Example: The classic Telescoping Series (or collapsing series) is
∞

∑

n=1

1

n(n + 1)
. At first glance,

∞
∑

n=1

1

n(n + 1)
=

1

2
+

1

6
+

1

12
+ . . . +

1

n(n + 1)
+ . . ., and it is not obvious what this sums to. When

you make a partial fractions decomposition of the series terms, everything changes.

∞
∑

n=1

1

n(n + 1)
=

∞
∑

n=1

1

n
−

1

n + 1

If we write out the nth partial sum:

Sn =

(

1 −
1

2

)

+

(

1

2
−

1

3

)

+

(

1

3
−

1

4

)

+ . . . +

(

1

n − 1
−

1

n

)

+

(

1

n
−

1

n + 1

)

= 1 −
1

n + 1

All middle terms cancel, and the original series
∞

∑

n=1

1

n(n + 1)
equals lim

n→∞
Sn = lim

n→∞
1 −

1

n + 1
= 1
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Sometimes, analyzing the limit of the sequence of partial sums is difficult, so we will learn several
convergence tests:

• nth term Divergence test • Limit Comparison Test

• p-Test • Alternating Series Test

• Geometric Series Test • Ratio Test

• Integral Test • Root Test

• (Direct) Comparison Test • Absolute Convergence Test

Please see the other class handout for the fine details of these convergence tests. We will reference
a few of these special cases here.

Theorem: If the series

∞
∑

n=1

an converges, then the terms an must go to 0, that is, lim
n→∞

an = 0.

The contrapositive statement is also true, stating that if the terms do not go to zero, then there is
no chance of that series converging. We give this test for divergence a name.

**********************************************************************************

nth term Divergence Test: If lim
n→∞

an 6= 0 or Does Not Exist, then the series
∞

∑

n=1

an diverges.

**********************************************************************************

CAUTION: The converse statement is not true. Just because the terms an of a series go to 0 as

n → ∞ does not mean that the series converges. Take a classic example, the harmonic series
∞

∑

n=1

1

n
.

The terms approach 0 as n approaches infinity, but we can show, either using a size argument, or
the integral test, that it is a divergent series.

If the terms of a series approach 0, all that means is “possible” convergence, and you have more

work to do. You will press onward to use other available series convergence tests listed above.
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We list a few of our favorite series.

Geometric series: Take a 6= 0. A geometric series is one of the following form, where each
successive term is obtained from the previous term by multiplying by some number r, called the
common ratio:

∞
∑

n=1

arn−1 = a + ar + ar2 + ar3 + . . . arn−1 + arn + . . .

A geometric series converges if |r| < 1 and diverges otherwise.

∞
∑

n=1

arn−1











=
a

1 − r
if |r| < 1

diverges if |r| ≥ 1

Think about the common ratio r being raised to a large power. If r is tiny then rn−1 will shrink
to 0 when n is large. The best advice is to write out the first few terms, pick off the first term a,

pick off the multiplying ratio r, check if |r| < 1, if it is, find the sum
a

1 − r
.

p-series:

∞
∑

n=1

1

np
=

1

1p
+

1

2p
+

1

3p
+

1

4p
+ . . . +

1

np
+ . . .

∞
∑

n=1

1

np







converges if p > 1

diverges if p ≤ 1

We proved this p-Test result using the convergence results we had from Section 8.8 regarding

improper p-integrals, along with the Integral Test.
∞

∑

n=1

1

np
is convergent exactly when

∫ ∞

1

1

xp
dx

is. Recall,

∫ ∞

1

1

xp
dx







converges if p > 1 (what does it converge to?)

diverges if p ≤ 1

Note: It is important to solidify the difference between a Geometric series and a p-series. You want
to immediately recognize these two series. For Geometric series, the variable n is in the exponent,
but for p-series, the variable n is in the base. Please learn the convergence conditions carefully,
since they are easy to mix up. The inequalities < vs. ≤ and > vs. ≥ are different for each.
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Keep in mind the difference between a sequence and a series. A sequence is a list of numbers, and

a series is a sum of numbers. For each series
∞

∑

n=1

an there are two related, but different, sequences:

• the sequence of the terms {an}

and

• the sequence of partial sums {Sn}

.

The question about convergence of a series is reduced to the question of convergence of a sequence.

For a series

∞
∑

n=1

an to converge, we need two things: the terms of the sequence must approach 0 as

n gets large, and the sequence of partial sums must converge.

• lim
n→∞

an = 0

and

• lim
n→∞

Sn = L

.

Example: Discuss whether the sequence

{(

n

n + 1

)n}∞

n=1

and the series
∞

∑

n=1

(

n

n + 1

)n

converge.

We showed earlier in this paper that lim
n→∞

(

n

n + 1

)n

=
1

e
. Therefore

the sequence

{(

n

n + 1

)n}∞

n=1

converges to
1

e
.

When we consider the series
∞

∑

n=1

(

n

n + 1

)n

, we recognize that the terms are not approaching 0,

they are approaching
1

e
. Therefore,

the series
∞

∑

n=1

(

n

n + 1

)n

diverges

by the nth Term Divergence Test. The terms of the series do converge to
1

e
, but because that limit

is not 0, we can immediately conclude something about the divergence of the series.
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Example: Discuss whether the sequence

{

3n2 + 7

5n2 + 1

}∞

n=1

and the series
∞

∑

n=1

3n2 + 7

5n2 + 1
converge.

We can easily show that lim
n→∞

3n2 + 7

5n2 + 1
=

3

5
(how?). Therefore

the sequence

{

3n2 + 7

5n2 + 1

}∞

n=1

converges to
3

5
.

When we consider the series
∞

∑

n=1

3n2 + 7

5n2 + 1
, we recognize that the terms are not approaching 0, they

are approaching
3

5
. Therefore, by the nth term divergence test,

the series
∞

∑

n=1

3n2 + 7

5n2 + 1
diverges .

Bounds: When working with series, it is sometimes helpful to compare our given series with a
another series whose convergence is easier to conclude. We will sometimes need certain bounds on
functions. We mention just a few here. As n gets large,

• 1 ≤ lnn ≤ n =⇒
1

n
≤

lnn

n
≤ 1

• n ≤ n! =⇒
1

n!
≤

1

n

• n ≤ 2n or in general n ≤ an for a > 1

• 2n ≤ n! =⇒
1

n!
≤

1

2n

• lnn ≤ nr for some r > 0

Example: Discuss whether the sequence

{

1

n!

}∞

n=1

and the series
∞

∑

n=1

1

n!
converge.

Hint: Of the two bounds listed above for
1

n!
, one of them is helpful enough to answer the con-

vergence question for the sequence (Squeeze Law?), and the other one is more helpful to answer

the convergence question for the series. Why is knowing that
∞

∑

n=1

1

n!
seems smaller than

∞
∑

n=1

1

n
not

enough to declare convergence of
∞

∑

n=1

1

n!
? Why is knowing that

∞
∑

n=1

1

n!
seems smaller than

∞
∑

n=1

1

2n

good enough to declare convergence of
∞

∑

n=1

1

n!
? You had this problem on your homework.
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