
Math 12, Fall 2006

Solutions to the Final Exam

1(a).

∫

4

0

dx

(9 + x2)3/2
= (x = 3 tan θ, dx = 3 sec2 θ dθ) =

∫

∗∗

∗

3 sec2 θ dθ

27 sec3 θ
=

1

9

∫

∗∗

∗

cos θ dθ

=
1

9
sin θ

∣

∣

∣

∣

∗∗

∗

=
1

9
· x√

9 + x2

∣

∣

∣

∣

4

0

=
4

9
√

25
− 0 =

4

45
,

where the third-to-last equality is by a right triangle with angle θ, height x, base 3, and therefore
hypoteneuse

√
9 + x2.

1(b).

∫

dx

x
√

1 − (ln x)2
= (u = ln x, du = x−1 dx) =

∫

du√
1 − u2

= arcsin u + C

= arcsin(ln x) + C.

1(c). Applying partial fractions to

∫

12

x2(x − 2)
dx, we rewrite the integrand as A/x + B/x2 +

C/(x − 2). Adding those fractions and comparing the numerator to the original numerator of
12, we get

Ax(x − 2) + B(x − 2) + Cx2 = 12, i.e., (A + C)x2 + (B − 2A)x − 2B = 12.
Either by evaluating the first equality at x = 0 and x = 2 and, say, x = 1, or by solving the
three equations A+C = 0, B−2A = 0, −2B = 12 given by the second equality, we get A = −3,
B = −6, C = 3. So the integral is
∫

12

x2(x − 2)
dx =

∫ −3

x
− 6

x2
+

3

x − 2
dx =

6

x
+ 3 ln |x − 2| − 3 ln |x| + C.

2.(a) Write

∫

0

−∞

dx

1 + 4x2
= lim

t→−∞

∫

0

t

dx

1 + 4x2
because the integral is improper at −∞ and

nowhere else.

The integral with t is

∫

0

t

dx

1 + 4x2
= (u = 2x, du = 2 dx) =

1

2

∫

0

2t

du

1 + u2

=
1

2
arctan u

∣

∣

∣

∣

0

2t

= 0 − 1

2
arctan(2t).

So the original integral is

∫

0

−∞

dx

1 + 4x2
= lim

t→−∞

−1

2
arctan(2t) = −1

2

(

−π

2

)

=
π

4
.

2(b). Write

∫

3

−1

dx

x4
=

∫

0

−1

dx

x4
+

∫

3

0

dx

x4
, since the integral is improper at 0 (in the middle).

The first of these two integrals is

∫

0

−1

dx

x4
= lim

t→0−

∫ t

−1

dx

x4
= lim

t→0−
− 1

3x3

∣

∣

∣

∣

t

−1

= lim
t→0−

− 1

3t3
− 1

3
= ∞.

Thus, this integral, and hence the original integral also, diverges.

3(a). lim
x→0

cosh x − 1

x2
=

0

0
L’H = lim

x→0

sinh x

2x
=

0

0
L’H = lim

x→0

cosh x

2
=

1

2
.



3(b). Write lim
x→0+

(cos x)1/x2

= exp

(

lim
x→0+

ln(cos x)

x2

)

because the original limit is a 1∞ indeter-

minate form.

The limit inside the exponential is lim
x→0+

ln(cos x)

x2
=

0

0
L’H = lim

x→0+

− sin x

cos x
2x

= lim
x→0+

−sin x

x
· cos x

2

= −1 · 1

2
= −1

2
. So the original limit is exp(−1/2) = e−1/2.

4(a). For the series
∞

∑

n=2

sin2(2n)

2n
, note that 0 ≤ sin2(2n)

2n
≤ 1

2n
. Since

∑ 1

2n
converges by the

Geometric Series Test, the original series therefore converges by the Comparison Test.

4(b). Applying the Ratio Test to
∞

∑

n=1

(2n)!

nn
, we get

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

∣

(2n + 2)!

(n + 1)n+1

(2n)!

nn

∣

∣

∣

∣

∣

∣

∣

∣

= lim
n→∞

(2n + 1)(2n + 2)

n + 1
·
(

n

n + 1

)n

= lim
n→∞

2(2n + 1)
(

1 + 1

n

)n =
2 · ∞

e
= ∞ > 1,

so the series diverges by the Ratio Test.

5. The series
∞

∑

n=0

(−1)n
√

n

n + 68
is alternating, and we check lim

n→∞

√
n

n + 68
= lim

n→∞

n−1/2

1 + 68n−1
= 0.

Moreover, the terms decrease for n ≥ 68, because if we let f(x) =

√
x

x + 68
, then

f ′(x) =
(1/2)x−1/2(x + 68) −√

x

(x + 68)2
=

68 − x

2
√

x(x + 68)2
< 0 for x > 68.

Thus, the series converges by the Alternating Series Test.

Meanwhile, we can compare the absolute series
∞

∑

n=0

√
n

n + 68
to

∞
∑

n=1

1

n1/2
by LCT:

lim
n→∞

√
n

n + 68
1

n1/2

= lim
n→∞

n

n + 68
= lim

n→∞

1

1 + 68n−1
= 1 > 0,

so the two series are comparable. Since
∞

∑

n=1

1

n1/2
diverges by the p-test, the original absolute

series diverges by the Limit Comparison Test.
Thus, the original series converges conditionally.

6(a).
∞

∑

n=1

(−1)n · 2n+2

3n
is a geometric series with initial term a = −8/3 and ratio r = −2/3.

Thus, the sum is a/(1 − r) = (−8/3)/(5/3) = −8/5.

6(b).
∞

∑

n=0

(−1)nπ2n+1

62n+1(2n + 1)!
=

∞
∑

n=0

(−1)n(π/6)2n+1

(2n + 1)!
= sin(π/6) =

1

2
.

2



7. Applying the Ratio Test to
∞

∑

n=1

(x + 2)n

n · 3n
gives

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

∣

(x + 2)n+1

(n + 1)3n+1

(x + 2)n

n · 3n

∣

∣

∣

∣

∣

∣

∣

∣

= lim
n→∞

n

n + 1
· |x + 2|

3
= lim

n→∞

1

1 + n−1
· |x + 2|

3
=

|x + 2|
3

The series converges if this limit is < 1 and diverges if the limit is > 1. Expanding |x+2|/3 < 1
gives −3 < x + 2 < 3, i.e., −5 < x < 1.

Checking the endpoints, observe that at x = 1 the series is
∑ 3n

n3n
=

∑ 1

n
, which diverges

by the p-test. At x = −5, the series is
∑ (−1)n

n
, which is alternating, and the absolute terms

1/n decrease with limit 0; so the series converges by the Alternating Series Test.
Thus, the interval of convergence is [−5, 1).

8(a). To find the Maclaurin series for g(x) = 3xex4

, start with ex =
∞

∑

n=0

xn

n!
, so that

ex4

=
∞

∑

n=0

x4n

n!
, and therefre the desired series is g(x) = 3xex4

=
∞

∑

n=0

3x4n+1

n!
.

8(b). To find the Maclaurin series for f(x) =
x

(1 + 2x)2
, start with

1

1 − x
=

∞
∑

n=0

xn and

differentiate to get
1

(1 − x)2
=

∞
∑

n=1

nxn−1. Substituting −2x for x gives

1

(1 + 2x)2
=

∞
∑

n=1

n · (−2)n−1xn−1, so that the desired series is

f(x) =
x

(1 + 2x)2
=

∞
∑

n=1

n · (−2)n−1xn.

9(a). (See me for a sketch of the region R beneath the graph of y = ex and above the x-axis,
for 0 ≤ x ≤ 2).
Slice the solid formed by revolving R about the line y = −1 with vertical slices. The slice at
position x is an annulus with inner radius 0−(−1) = 1, and with outer radius ex−(−1) = ex+1.
The slices run from x = 0 to x = 2. Thus, the volume is
∫

2

0

π(ex + 1)2 − π(1)2 dx =

∫

2

0

π(e2x + 2ex) dx = π

[

1

2
e2x + 2ex

]2

0

=
π

2
(e4 + 4e2 − 5).

9(b). Slice the solid formed by revolving R about the line x = 4 into vertical cylinders. The
slice passing through position x has radius 4 − x and height ex; the outermost cylinder is at
x = 0 and the innermost is at x = 2. Thus, the volume is
∫

2

0

2π(4 − x)ex dx = (u = 4 − x, dv = 2πex dx, du = −dx, v = 2πex)

= 2π(4 − x)ex
∣

∣

∣

2

0

+

∫

2

0

2πex dx = 2π(2e2 − 4) + 2π
[

ex
]2

0

= 2π(3e2 − 5).
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10(a). For the parametric curve C given by x = t + t2, y = t − t2 for 0 ≤ t ≤ 2, we compute

x′(t) = 1 + 2t and y′(t) = 1 − 2t, so that
dy

dx
=

1 − 2t

1 + 2t
.

10(b). See me for a sketch. Roughly speaking, since dy/dx is positive for t < 1/2 and negative
for t > 1/2 (hitting zero at t = 1/2 but never hitting ∞), and since (x, y) is (0, 0) for t = 0, is
(3/4, 1/4) for t = 1/2, and is (6,−2) for t = 2, we can describe it as follows. The curve starts
from the origin, slopes up to the upper right towards a peak at (3/4, 1/4), then slopes down to
the lower right to the point (6,−2).
Besides starting at (0, 0), the curve never again hits the y-axis, since x(t) > 0 for t > 0.
However, since y = 0 when t = 0, 1, and since x(1) = 2, the curve crosses the x-axis on the way
down at the point (2, 0).

10(c). Since (x′(t))2 + (y′(t))2 = (1 + 2t)2 + (1− 2t)2 = 2 + 8t2, the integral for the length of C

is

∫

2

0

√
2 + 8t2 dt.

10(d). Similarly, the integral for the surface area generated by revolving C about the x-axis is
∫

2

0

2π(t − t2)
√

2 + 8t2 dt.

11(a). See me for a sketch the curve r = sin(3θ). (It is a 3-leaf rose, with one petal pointing
down, and the other two pointing into the first and second quadrants, at angles π/6 and 5π/6.
See, for example, the book’s solution to 11.4 #13 (in the answer appendix, page A95), but
rotated 90 degrees clockwise.)

11(b). To find the area enclosed, it’s important to realize that the curve is traced out in full as
θ runs only from 0 to π. Thus, the area enclosed is
∫ π

0

1

2
sin2(3θ) dθ =

1

4

∫ π

0

1 − cos(6θ) dθ =
θ

4
− 1

24
sin(6θ)

∣

∣

∣

∣

π

0

=
π

4
− 0 − 0 + 0 =

π

4
.
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