Math 12, Fall 2006

Solutions to the Final Exam
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where the third-to-last equality is by a right triangle with angle 8, height x, base 3, and therefore
hypoteneuse v9 + x2.
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(u=Inz, du=x = arcsinu + C
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= arcsin(lnz) + C.
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1(c). Applying partial fractions to / PPy
C/(z — 2). Adding those fractions and comparing the numerator to the original numerator of
12, we get
Azx(z —2) + Bz — 2) + C2* = 12, ie., (A+C)z* + (B — 24)x — 2B = 12.

Either by evaluating the first equality at x = 0 and x = 2 and, say, x = 1, or by solving the
three equations A4+C =0, B—2A = 0, —2B = 12 given by the second equality, we get A = —3,
B = —6, C = 3. So the integral is
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dz, we rewrite the integrand as A/z + B/z* +
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nowhere else.
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So the original integral is / szz = tiimoo —5 arctan(2t) = -3 <_g> = %

. Write / — / — / gy since the integral is improper at 0 (in the middle).
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Thus, this integral, and hence the original integral also, diverges.

The first of these two integrals is
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3(b). Write lim (cosz)"”" = exp ( lim M) because the original limit is a 1> indeter-

minate form.
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The limit inside the exponential is lim M — “L'H = lim —C08& _ jj, M CO8Y
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=-1- 3= "5 So the original limit is exp(—1/2) = e~1/2.
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4(a). For the series Z M note that 0 < SH}# < o Since Z on comverges by the

n=2
Geometric Series Test, the orlginal series therefore converges by the Comparison Test.
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4(b). Applying the Ratio Test to E ﬂ, we get
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so the series diverges by the Ratio Test.
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5. The series Z )—6\25 is alternating, and we check T}Lrgo niﬁ68 = nILHSO # =0
Moreover, the terms decrease for n > 68, because if we let f(z) = +x68’ then
x
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Thus, the series converges by the Alternating Series Test.
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so the two series are comparable. Since Z 7 diverges by the p-test, the original absolute

n=1
series diverges by the Limit Comparison Test.

Thus, the original series converges conditionally.
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6(a). Z % is a geometric series with initial term @ = —8/3 and ratio r = —2/3.

Thus, the sum is a/(1 — r) = (~8/3)/(5/3) = —8/5.
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7. Applying the Ratio Test to Z m gives
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The series converges if this limit is < 1 and diverges if the limit is > 1. Expanding |z +2[/3 < 1
gives -3 <zx+2 <3, ie, —d<x <1

Checking the endpoints, observe that at x = 1 the series is o = Z . which diverges
n n

—1)n
by the p-test. At x = —5, the series is Z (=1

1/n decrease with limit 0; so the series converges by the Alternating Series Test.
Thus, the interval of convergence is [—5, 1).

, which is alternating, and the absolute terms
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8(a). To find the Maclaurin series for g(x) = 3ze™ | start with e* = Z x_" so that
n!
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e’ = z% R and therefre the desired series is g(z) = 3ze® = z% o
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8(b). To find the Maclaurin series for f(x) = ﬁ, i . Zx” and
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differentiate to get —2 = Z na™ ', Substituting —2x for x gives

Z n- )" 12" ! so that the desired series is
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9(a). (See me for a sketch of the region R beneath the graph of y = e® and above the z-axis,
for 0 <z <2).
Slice the solid formed by revolving R about the line y = —1 with vertical slices. The slice at

position x is an annulus with inner radius 0—(—1) = 1, and with outer radius e* —(—1) = e*+1.

The slices run from x = 0 to x = 2. Thus, the volume is
2
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/ e+ 1) —1(1)*de = / m(e* 42" dr =7 [56% + 26”] = 5(64 + 4e* — 5).
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9(b). Slice the solid formed by revolving R about the line z = 4 into vertical cylinders. The
slice passing through position x has radius 4 — x and height e”; the outermost cylinder is at
x = 0 and the innermost is at x = 2. Thus, the volume is

2
/ 27(4 — x)e® dx = (u=4—2x, dv=2me" dz, du = —dx, v = 2me")
0

2 2 2
=271(4 — x)e” / 2me” dx = 2m(2e* — 4) + 27 [ex] = 271(3e* — 5).
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10(a). For the parametric curve C given by x =t +t?, y =t — t* for 0 < t < 2, we compute
dy 1-—2t

"B)y=1+2tand y/(t) =1—2t that —= = .

2 (t) + 2t and y/(t) , 80 that —= = ==,

10(b). See me for a sketch. Roughly speaking, since dy/dx is positive for t < 1/2 and negative
for t > 1/2 (hitting zero at ¢t = 1/2 but never hitting 0o0), and since (x,y) is (0,0) for t = 0, is
(3/4,1/4) for t = 1/2, and is (6, —2) for ¢t = 2, we can describe it as follows. The curve starts
from the origin, slopes up to the upper right towards a peak at (3/4,1/4), then slopes down to
the lower right to the point (6, —2).

Besides starting at (0,0), the curve never again hits the y-axis, since z(t) > 0 for ¢ > 0.
However, since y = 0 when ¢t = 0, 1, and since x(1) = 2, the curve crosses the z-axis on the way
down at the point (2,0).

10(c). Since (2'(¢))* + (y'(t))* = (14 2t)* + (1 — 2t)* = 2 + 82, the integral for the length of C'

2
is / V24 8t2dt.
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10(d). Similarly, the integral for the surface area generated by revolving C' about the z-axis is

2
/ 21 (t — t2)V/2 + 8t2 dt.
0

11(a). See me for a sketch the curve r = sin(36). (It is a 3-leaf rose, with one petal pointing
down, and the other two pointing into the first and second quadrants, at angles 7/6 and 57 /6.
See, for example, the book’s solution to 11.4 #13 (in the answer appendix, page A95), but
rotated 90 degrees clockwise.)

11(b). To find the area enclosed, it’s important to realize that the curve is traced out in full as
6 runs only from 0 to 7. Thus, the area enclosed is
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