Review Packet for Exam #3

Math 12-D. Benedetto

Interval of Convergence: Find the **interval** and **radius of convergence** for each of the following power series. Analyze convergence at the endpoints carefully, with full justification.

1.
$$\sum_{n=1}^{\infty} \frac{(2x+3)^n}{n}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-3)^n x^n}{n^2 4^n}$$

3.
$$\sum_{n=1}^{\infty} \frac{10^n (x+3)^n}{(n+1)^3 n!}$$

4.
$$\sum_{n=0}^{\infty} \frac{n2^n}{n+5} (x+1)^n$$

5.
$$\sum_{n=0}^{\infty} \frac{(n+2)! (x-5)^n}{10^n}$$

6.
$$\sum_{n=0}^{\infty} \frac{\sqrt{n} (2x-1)^n}{4^n}$$

7.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^n}$$

9.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2} x^n$$

10.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(3n)!} x^n$$

11.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^3} (x-1)^n$$

12.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^{\frac{1}{2}}}$$

13.
$$\sum_{n=1}^{\infty} nx^n$$

14. Challenge:
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$$

 n^{th} degree Taylor Polynomials: Find the 3^{rd} Degree Taylor Polynomial for each of the following functions centered at the given *a*-value.

- 15. $f(x) = \frac{1}{x}$ with a = 2.
- 16. $f(x) = \ln x$ with a = 1.
- 17. $f(x) = \arcsin x$ with a = 0.
- 18. $f(x) = \cos x \ln(1+x)$ with a = 0.
- 19. $f(x) = \sqrt{1+x}$ with a = 3.

MacLaurin Series: Find the MacLaurin Series for each of the following functions, as well as the corresponding redius of convergence.

- 20. $f(x) = xe^{-x^2}$
- 21. $f(x) = x^2 e^{-3x}$
- 22. $f(x) = \frac{1 e^{-x}}{x}$
- 23. $f(x) = \ln\left(\frac{1+x}{1-x}\right)$
- 24. $f(x) = \frac{x}{1+2x}$

25.
$$f(x) = x \arctan(2x)$$

Power Series Representations of Functions: Use a Power Series Representation for each of the following functions to compute the given integral. Estimate each one within the given error.

- 26. Estimate $\int_0^1 \frac{\sin x}{x} dx$ with error less than 0.01.
- 27. Estimate $\int_0^{\frac{1}{2}} x \arctan x \, dx$ with error less than 0.01.
- 28. Estimate $\int_0^1 \sin(x^2) dx$ with error less than 0.1.
- 29. Estimate $\int_0^{\frac{1}{2}} e^{-x^3} dx$ with error less than 0.01.

Sums: Find the **sum** for each of the following series. (hint: you are allowed to pull an x out of these sums in n. For the harder ones, can you recognize the series as a derivative or integral of another function's power series representation?) Your answer may include x.

30.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 2^{n+2}}{3^n}$$

31. $1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$
32.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{(2n)!}$$

33.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 49^n \pi^{2n}}{4^n (2n+1)!}$$

34.
$$\sum_{n=0}^{\infty} \frac{(-9)^n \pi^{2n+1}}{4^n (2n)!}$$

35.
$$\sum_{n=0}^{\infty} \frac{(-\pi^2)^n}{36^n (2n)!}$$

36.
$$\sum_{n=0}^{\infty} \frac{x^{7n+1}}{n!}$$

37.
$$\sum_{n=1}^{\infty} \frac{x^{7n+1}}{n!}$$

38.
$$\sum_{n=1}^{\infty} \frac{n}{n!} x^n$$

39.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1} (n+1)}$$

40.
$$\sum_{n=0}^{\infty} nx^n$$

41.
$$\sum_{n=0}^{\infty} \frac{n}{2^n}$$

42. CHALLENGE:
$$\sum_{n=0}^{\infty} n(n+1)x^n$$

43. CHALLENGE:
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$

Volumes of Revolution: Find the following volumes requested. Make sure to draw one of the Approximating Disks, Washers, or Cylindrical Shells in your diagram. This will help you set up your integral(s).

- 44. Consider the region bounded by $y = \cos x$, x = 0, $x = \frac{\pi}{2}$, and the x-axis. Rotate the region about the y-axis and find the volume of the resulting solid using the Cylindrical Shell Method.
- 45. Consider the same region bounded by $y = \cos x$, x = 0, $x = \frac{\pi}{2}$, and the x-axis. Now rotate the region about the x-axis and find the volume of the resulting solid using the Disk Method.
- 46. Consider the region bounded by $y = \ln x$, x = 1, x = e, and the x-axis. Rotate the region about the y-axis and find the volume of the resulting solid using the Cylindrical Shell Method.
- 47. Consider the same region bounded by $y = \ln x$, x = 1, x = e, and the x-axis. Rotate the region about the x-axis and find the volume of the resulting solid using the Disks Method. What would be the set-up for using the Shell Method? Try and set it up at least...
- 48. Consider the region bounded by $y = e^x$, x = 1, x = 2, and the x-axis. Rotate the region about the y-axis and find the volume of the resulting solid using the Cylindrical Shell Method.
- 49. Consider the region bounded by $y = e^x$, x = 0, x = 2, and the x-axis. Rotate the region about the line y = -1 and find the volume of the resulting solid using the Washer Method. Why is the Washer Method more helpful here than say the Cylindrical Shells Method? Can you set-up the integral using Shells?
- 50. Consider the same region bounded by $y = e^x$, x = 0, x = 2, and the x-axis. Rotate the region about the line x = 4 and find the volume of the resulting solid using the Cylindrical Shell Method.
- 51. Consider the same region bounded by $y = e^x$, x = 0, x = 2, and the x-axis. Rotate the region about the line x = -1 and find the volume of the resulting solid. Which method would be helpful?
- 52. Consider the region bounded by $y = e^x$, y = x, x = 0 and $x = \ln 3$. Rotate the region about the y-axis and find the volume of the resulting solid. Which method would be helpful?
- 53. Consider the same region bounded by $y = e^x$, y = x, x = 0, $x = \ln 3$, and the x-axis. Rotate the region about the x-axis and find the volume of the resulting solid. Which method would be helpful?
- 54. Consider the region bounded by $y = \sqrt{x-1}$, x = 4, x = 9 and the x-axis. Rotate the region about the line x = -2 and find the volume of the resulting solid. Which method would be helpful?

Parametric Equations: Answer each of the following questions, related to the given parametric equations.

- 55. Let the curve represented by the parametric equations $x = t + \frac{1}{t}$ and $y = 2 \ln t$ for $1 \le t \le 3$. (a) Find the equation of the tangent line to the curve at the point $(\frac{5}{2}, 2 \ln 2)$.
 - (b) Find the arclength of this parametric curve for $1 \le t \le 3$.
- 56. Let the curve represented by the parametric equations $x = \tan t t$ and $y = \ln(\cos t)$ for $0 \le t \le \frac{\pi}{3}$.
 - (a) Find $\frac{dy}{dx}$ for the curve when $t = \frac{\pi}{6}$.
 - (b) Find the arclength of this parametric curve for $0 \le t \le \frac{\pi}{3}$. (hint: $\sec^2 t 1 = \tan^2 t$)
- 57. Let the curve represented by the parametric equations $x = t e^t$ and $y = 1 4e^{\frac{t}{2}}$ for $0 \le t \le \ln 5$.
 - (a) Find $\frac{dy}{dx}$ for the curve when $t = \ln 4$.
 - (b) Find the arclength of this parametric curve for $0 \le t \le \ln 5$.
 - (c) Find the surface area obtained by rotating this curve about the x-axis for $0 \le t \le \ln 5$.
- 58. Let the curve represented by the parametric equations $x = e^t \cos t$ and $y = e^t \sin t$ for $0 \le t \le \ln \pi$.
 - (a) Find the arclength of this parametric curve for $0 \le t \le \ln \pi$.
- 59. Let the curve represented by the parametric equations $x = 3t^2$ and $y = 2t^3$ for $0 \le t \le \ln 3$.
 - (a) Find the equation of the tangent line to the curve at the point (3, 2).
 - (b) Find the arclength of this parametric curve for $0 \le t \le 1$.
 - (c) Find the surface area obtained by rotating this curve about the y-axis for $0 \le t \le 1$.
- 60. Let the curve represented by the parametric equations $x = \sin^3 t$ and $y = \cos^3 t$ from t = 0 to $t = \frac{\pi}{2}$.
 - (a) Find the equation of the tangent line to the curve at the point $(\frac{3\sqrt{3}}{8}, \frac{1}{8})$.
 - (b) Find the arclength of this parametric curve for $0 \le t \le 1$.
 - (c) Find the surface area obtained by rotating this curve about the x-axis for $0 \le t \le \frac{\pi}{2}$.
- 61. Let the curve represented by the parametric equations x = 3 2t and $y = e^t + e^{-t}$.
 - (a) Find the arclength of this parametric curve for $0 \le t \le 1$.
 - (b) Find the surface area obtained by rotating this curve about the x-axis for $0 \le t \le 1$.

(c) Set-up (but do not evaluate) the definite integral representing the surface area of the figure obtained by revolving this curve around the y-axis for $0 \le t \le 1$.