Math 12 Final Exam May 11, 2011

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need not simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{-\ln 5}$, or $e^{3\ln 3}$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)
- 1. [15 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to 0} \frac{1 - \cosh(2x)}{x + \ln(1 - x)}$$

(b)
$$\lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x$$

2. [30 Points] Evaluate each of the following integrals.

(a)
$$\int \frac{1}{(x^2+4)^{\frac{5}{2}}} dx$$

(b)
$$\int x \arcsin x \, dx$$

(c)
$$\int \frac{x^4 + 2x^3 + 7x^2 + 8x + 7}{x^3 + x^2 + 4x + 4} dx = \int \frac{x^4 + 2x^3 + 7x^2 + 8x + 7}{(x+1)(x^2+4)} dx$$

3. [20 Points] For each of the following improper integrals, determine whether it converges or diverges. If it converges, find its value.

(a)
$$\int_{7}^{\infty} \frac{1}{x^2 - 6x + 25} dx$$

(b)
$$\int_0^3 \frac{1}{\sqrt{9-x^2}} dx$$

Find the **sum** of each of the following series (which do converge):

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 4^{n+1}}{3^{2n-1}}$$
 (b) $1 - \ln 7 + \frac{(\ln 7)^2}{2!} - \frac{(\ln 7)^3}{3!} + \frac{(\ln 7)^4}{4!} - \frac{(\ln 7)^5}{5!} + \dots$ (c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{9^n (2n)!}$$

In each case determine whether the given series is absolutely convergent, conditionally convergent, or diverges. Justify your answers.

1

(a)
$$\sum_{1}^{\infty} \frac{(-1)^n n}{3n^2 + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3^n + 4^n}{5^{n+1}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{\arctan n + n^2 \sqrt{n}}{n^7 + 1}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{3n^2 + 1}$$
 (b) $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{5^{n+1}}$ (c) $\sum_{n=1}^{\infty} \frac{\arctan n + n^2 \sqrt{n}}{n^7 + 1}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^n (3n)!}{n^n 2^n (n!)^2 \ln n}$

- **6.** [10 Points] Find the **Interval** and **Radius** of Convergence for the power series $\sum_{n=0}^{\infty} \frac{(-1)^n (2x-3)^n}{n \ 6^{n+1}}.$ Analyze carefully and with full justification.
- 7. [5 Points] Write the MacLaurin Series for $f(x) = e^{-x^2}$. Use this series to determine the fourth and fifth derivatives of $f(x) = e^{-x^2}$ at x = 0.
- **8.** [10 Points] Please analyze with detail and justify carefully.
- (a) Find the **MacLaurin series** representation for $f(x) = x \arctan x$. Your answer should be in sigma notation $\sum_{n=0}^{\infty}$.
- (b) Use the MacLaurin series representation for $f(x) = x \arctan x$ from Part(a) to

Estimate
$$\int_0^{\frac{1}{2}} x \arctan dx$$
 with error less than $\frac{1}{100}$.

Justify in words that your error is indeed less than $\frac{1}{100}$.

- **9.** [15 Points] Consider the region bounded by $y = \cos x$, $y = \sin x$, x = 0 and $x = \frac{\pi}{4}$. Rotate the region about the y-axis. Compute the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating cylindrical shells.
- 10. [15 Points] Consider the Parametric Curve represented by $x=e^t-t$ and $y=4e^{t/2}$.
- (a) Compute the **arclength** of this parametric curve for $0 \le t \le 1$.
- (b) Set-up, BUT DO NOT EVALUATE, the definite integral representing the surface area obtained by rotating this curve about the y-axis, for $0 \le t \le 1$.
- 11. [15 Points] Compute the area bounded inside the polar curve $r = 2 + 2\cos\theta$ and outside the polar curve r = 3. Sketch the Polar curves.
- 12. [10 Points] Find the general solution for each of the following differential equations.

(a)
$$\frac{dy}{dx} = (\ln x) \sqrt{1-y^2}$$
 (b) $x \frac{dy}{dx} - y = x^2 e^x$