Ambherst College, DEPARTMENT OF MATHEMATICS
Math 12 Final Exam
May 13, 2010

Answer Key

1. [10 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the
limit equals a value, 400 or —oo, or Does Not Exist.
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2. [15 Points] Evaluate each of the following integrals.
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3. [20 Points]  For each of the following improper integrals, determine whether it converges
or diverges. If it converges, find its value.
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Clearing the denominator yields:
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so that A+ B=3 and 34 —4B =2
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4. [10 Points] Find the sum of each of the following series (which do converge):
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9. [20 Points] In each case determine whether the given series is absolutely convergent,
conditionally convergent, or diverges. Justify your answers.
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Secondly, we are left to examine the original alternating series with the Alternating Series Test.
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e 49
. th .
(b) ; o Diverges by n*" term Divergence Test
n g , n
sincenliqnoloij__l :%L: nhHIgOT:oo#O
o0
(=1)"n!
© D
n=1
Try Ratio Test:
(=" (n+1)!
nt1 —1)"t! 1)! "
lim |— 2+ ~ i |GV D
n—oo (—1)”n! n—o00 (—1)" n! (n + 1>”+1
nn
1)n! " " |
_ i (DR & = lim ——— = lim [—— ] =><1
n—oo ! (n+1)(n+1)" n—ooo(n+1)" n—oo\n+1 e

The series is ’Absolutely Convergent by the Ratio Test ‘

io: n+8

n=1
n® + 8 >
First examine the absolute series Z R Z —- which is a convergent p-series with p =4 > 1.
n= 1
n3 +8
n? _9 n’ + 8n?
Check: lim 2 9 = lim nhen = 1 which is finite and non-zero. Therefore, these two series
n—00 1 n—oo n’ —9
n4

1
share the same behavior. Since Z —; converges, then the absolute series also
n

n=1

Converges by Limit Comparison Test ‘ As a result, we have Absolute Convergence, which implies

the original series is | Absolutely Convergent ‘




6. [10 Points] Find the Interval and Radius of Convergence for the following power series.
Analyze carefully and with full justification.
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7. [5 Points] Consider the function f(z) that satisfies the following
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Find the Taylor polynomial of degree 3 for f(x) centered at a = 3.
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8. [10 Points] MacLaurin Series: Please analyze with detail and justify carefully.

(a) Find the MacLaurin series representation for f(x) = zIn(1 + x).
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Note this is an alternating series. Use the Alternating Series Estimation Theorem. If we approxi-
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9. [15 Points] Volumes of Revolution

(a) Consider the region bounded by y = e®, y = Inx, x = 1, and * = 2. Rotate the region about
the . Compute the volume of the resulting solid using the Cylindrical Shells Method.
Sketch the solid, along with one of the approximating cylindrical shells.

See me for a sketch.
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(b) Consider the same region bounded by y = €*, y = Inx, x = 1, and * = 2. Rotate the
region about the vertical line . Set up, BUT DO NOT EVALUATE!! the integral to
compute the volume of the resulting solid using the Cylindrical Shells Method.

See me for a sketch.
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10. [15 Points] Consider the Parametric Curve represented by & = e* — t and y = 4et/2.

(a) Find the arclength of this parametric curve for 0 <¢ < 1.
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(b) Set up, BUT DO NOT EVALUATE!!, the definite integral representing the surface area
of the solid obtained by rotating this curve about the x-axis, for 0 < ¢ < 1.
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11. [15 Points] For each part, sketch the Polar curve(s), and answer the related questions:

(a) Compute the area enclosed by the cardioid r = 1 4 sin 6.
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It’s important to note that one full cycle of the cardioid closes up on itself as # ranges from 6 = 0
to 6 = 2.
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(b) Set up, BUT DO NOT EVALUATE!!, the definite integral representing the area bounded
inside 7 = 2 + 2 cos 0 and outside r = 3.
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These two polar curves intersect when 2 + 2cosf = 3 = 2cosf = 1 = cosf = % =0 =—% or
¢ = § . Using symmetry, we will integrate from 6§ = 0 to § = § and double that area.
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12. [10 Points] Find the general solution for each of the following differential equations.
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Recognize left side as a product rule derivative:
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