## Homework #2

## Due Friday, January 31st in Gradescope by 11:59 pm ET

Goal: Review of Limits, Derivatives and Integrals for Exponentials and Logarithms. Plenty of help in Office Hours!

**FIRST:** Read through and understand the following Examples.

Think about the graph of  $y = \ln x$ . We know that

$$\lim_{x\to 0^+} \ln x = \lim_{x\to 0^+} \ln \mathscr{Z} = -\infty$$
. Learn this

Warning: Do **not** write ln 0; it is undefined.

Ex:  $\lim_{x\to 5^+} \ln(x-5) = \lim_{x\to 5^+} \ln\left(x-\frac{5+5}{5}\right) = -\infty$  The arrows help justify the size argument(s).

Ex: 
$$\lim_{x \to 8^{-}} \ln|x - 8| = \lim_{x \to 8^{-}} \ln|x - 8| = -\infty$$

Ex: 
$$\int \frac{(3-\sqrt{x})(1+2\sqrt{x})}{x^2} dx = \int \frac{3+6\sqrt{x}-\sqrt{x}-2x}{x^2} dx = \int \frac{3+5\sqrt{x}-2x}{x^2} dx$$
$$= \int \frac{3}{x^2} + \frac{5\sqrt{x}}{x^2} - \frac{2x}{x^2} dx = \int \frac{3}{x^2} + \frac{5}{x^{\frac{3}{2}}} - \frac{2}{x} dx = \int \frac{3}{x^2} + \frac{5}{x^{\frac{3}{2}}} - \frac{2}{x} dx$$
$$\stackrel{\text{prep}}{=} \int 3x^{-2} + 5x^{-\frac{3}{2}} - \frac{2}{x} dx = -3x^{-1} + 5(-2)x^{-\frac{1}{2}} - 2\ln|x| + C = \boxed{-\frac{3}{x} - \frac{10}{\sqrt{x}} - 2\ln|x| + C}$$

Ex: 
$$\int_{\ln 3}^{\ln 8} \frac{e^x}{\sqrt{1+e^x}} dx = \int_4^9 \frac{1}{\sqrt{u}} du = \int_4^9 u^{-\frac{1}{2}} du = 2\sqrt{u} \Big|_4^9 = 2\sqrt{9} - 2\sqrt{4} = 6 - 4 = \boxed{2}$$
Here  $\begin{bmatrix} u &= 1+e^x \\ du &= e^x dx \end{bmatrix}$  and  $\begin{bmatrix} x = \ln 3 & \Longrightarrow u = 1+e^{\ln 3} = 1+3=4 \\ x = \ln 8 & \Longrightarrow u = 1+e^{\ln 8} = 1+8=9 \end{bmatrix}$ 

Ex: 
$$\int_{1}^{2} \frac{1}{3 - 5x} dx = -\frac{1}{5} \int_{-2}^{-7} \frac{1}{u} du = -\frac{1}{5} \ln|u| \Big|_{-2}^{-7} = -\frac{1}{5} (\ln|-7| - \ln|-2|) = \boxed{-\frac{1}{5} \ln\left(\frac{7}{2}\right)}$$

Here 
$$\begin{vmatrix} u &= 3-5x \\ du &= -5 \ dx \\ -\frac{1}{5}du &= dx \end{vmatrix} \text{ and } \begin{vmatrix} x=1 &\Longrightarrow u=3-5=-2 \\ x=2 &\Longrightarrow u=3-10=-7 \end{vmatrix}$$

Next, Complete the following Homework problems.

Differentiate the following functions. Simplify.

$$1. \ f(x) = e^{\xi}$$

$$2. f(x) = e^x + x^{\epsilon}$$

$$3. \ y = \frac{1 - e^{2x}}{1 + e^{2x}}$$

1. 
$$f(x) = e^5$$
 2.  $f(x) = e^x + x^e$  3.  $y = \frac{1 - e^{2x}}{1 + e^{2x}}$  4.  $f(x) = e^{\sin(2x)} + \sin(e^{2x})$ 

$$5. \ y = e^{\sqrt{x}}$$

6. 
$$y = x^2 e^{-\frac{1}{3}}$$

7. 
$$y = \ln(1 + e^{3x})$$

5. 
$$y = e^{\sqrt{x}}$$
 6.  $y = x^2 e^{-\frac{1}{x}}$  7.  $y = \ln(1 + e^{3x})$  8.  $f(x) = \ln\left(\frac{1}{x}\right) + \frac{1}{\ln x}$ 

9. Express the quantity as a single logarithm. Simplify.

$$\frac{1}{3}\ln[(x+2)^3] + \frac{1}{2}[\ln x - \ln[(x^2 + 3x + 2)^2]]$$

Solve each of the following equations for x:

10. 
$$e^{7-4x} = 6$$

11. 
$$\ln(3x - 10) = 2$$

Evaluate each of the following Limits. Justify the size argument(s) using arrows.

12. 
$$\lim_{x \to 2^-} \ln |x - 2|$$

13. 
$$\lim_{x \to 3^+} \ln(x^2 - 9)$$

Evaluate each of the following Integrals. Simplify. Justify.

14. 
$$\int e^x + x^e \ dx$$

15. 
$$\int_0^{\ln 4} \frac{1}{e^{2x}} dx$$

14. 
$$\int e^x + x^e dx$$
 15.  $\int_0^{\ln 4} \frac{1}{e^{2x}} dx$  16.  $\int \frac{(1+e^x)^2}{e^x} dx$ 

17. 
$$\int (e^x + e^{-x})^2 dx$$
 18.  $\int \frac{e^x}{1 + e^x} dx$  19.  $\int_2^3 \frac{1}{5 - 4x} dx$ 

$$18. \int \frac{e^x}{1+e^x} \ dx$$

19. 
$$\int_{2}^{3} \frac{1}{5 - 4x} \ dx$$

$$20. \int_{e}^{e^3} \frac{4}{x(\ln x)^2} \ dx$$

## REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

Tuesday: 1:00–4:00 pm

Wednesday: 1:00-3:00 pm

Friday: 12:00–2:00 pm

Math Fellow evening TA Help Hours TBD soon

- Office Hours are open to everyone. Please feel welcome whether you have lots of questions or just one question. Just stop by. :-) Working on your calculus assignment can be fun! You are encouraged to make fully engaged visits to office hours **each** week. I hope that you come hang out at many help sessions.
- NO LATE HOMEWORK! unless illness or emergency occurs.