
Math 121, Section(s) 01, Spring 2025

Homework #16

Due Friday, April 11th in Gradescope by 11:59 pm ET

Goal: Exploring more of the Relationship between Power Series and functions, including
Differentiation and Integration of Power Series. Also substitution into a known MacLaurin
Series. Also SUMS which are not Geometric.

FIRST: Read through and understand the following Examples. Simplify.

Ex: Use Substitution to find the Series for this function and find the Radius of Convergence.
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Note how we were able to avoid running a Ratio Test for find the Radius of Convergence.

Ex: Find the Series Representation for ln (9 + x2). One method uses Integration.
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Test x = 0 into both sides to solve for C. Expand in long form to fully justify.
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Integration above. So R = 3 still.

Continue on and Complete the next page of problems



Find the Series Representation for the following functions using substitution and determine
the Radius of Convergence R. Simplify.

1.
1

1 + x2
2.
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3. x3 cos (x2) 4. 5x2 sin (5x)
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10. Prove the Power Series Representation formula for arctan x, as shown in class. Yes, show
that C = 0.

It is most convincing to expand your series in long expanded form to best solve for C, by
plugging in or testing the value of the center point, here x = 0, into both sides of the equation
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11. Find Series Representation for ln(5− x). Solve for C and the Radius R.
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∫
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12. Find the MacLaurin Series for f(x) = e−2x using two different methods. Your answers
should be in Sigma notation.

First, using the Definition of the MacLaurin Series (“Chart Method”).

Second, use Substitution into a known series.

Continue to next page



13. You do not need to state the Radius. Answers should be in Sigma notation
∞∑
n=0

here.

You may use the fact that sinx =
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without extra justification.

(a) Use the Definition (“Chart Method”) to compute the MacLaurin Series for F (x) = cos x.

(b) Use Differentiation to compute the Series for F (x) = cos x.

Hint: cosx =
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(c) Use Integration to compute the Series for F (x) = cos x.

Hint: cosx =

∫
− sinx dx =

∫
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Hints: yes, you should solve for +C. yes, C should equal 1. Show why C = 1.

Find the Sum of each of the following Series, which do converge.
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REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

6:00–7:30 pm TA Jude, SMUDD 207

Tuesday: 1:00–4:00 pm

6–7:30 pm TA Aaron, SMUDD 207

Wednesday: 1:00-3:00 pm

6–7:30 pm TA Jude, SMUDD 207

7:30–9:00 pm TA Aaron, SMUDD 207

Thursday: none for Professor

extras may be added, TBD weekly

7:30–9:00 pm TA DJ, SMUDD 207

Friday: 12:00–3:00 pm

7:30–9:00 pm TA DJ, SMUDD 207

Pay careful attention to details here.

Manipulating power series requires a balance

of memory and technical skill.


