

Math 121 Midterm Exam #2 March 28, 2025

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $\arctan(\sqrt{3})$, $e^{\ln 4}$, $\ln(e^7)$, or $e^{3\ln 3}$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)
- 1. [27 Points] Compute the following Improper integrals. Simplify all answers. Justify.

(a)
$$\int_0^e x^4 \ln x \ dx$$

(b)
$$\int_{-\infty}^{1} \frac{1}{x^2 - 6x + 13} dx$$

(a)
$$\int_0^e x^4 \ln x \, dx$$
 (b) $\int_{-\infty}^1 \frac{1}{x^2 - 6x + 13} \, dx$ (c) $\int_{-7}^0 \frac{x + 15}{x^2 + 6x - 7} \, dx$

Use the Integral Test to determine if $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^4}$ Converges or [10 Points] Diverges.

Note: You do **not** have to check the 3 pre-conditions for the Integral Test.

3. [25 Points] Determine whether each of the given series Converges or Diverges. Name any Convergence Test(s) you use, and justify all of your work.

(a)
$$\sum_{n=2}^{\infty} \frac{n^6}{\ln n}$$

(a)
$$\sum_{n=2}^{\infty} \frac{n^6}{\ln n}$$
 (b) $-4 - \frac{4}{2} - \frac{4}{3} - 1 - \frac{4}{5} - \frac{4}{6} - \dots$ (c) $\sum_{n=1}^{\infty} \frac{4}{n^6} + \frac{(-6)^n}{7^{2n}}$

(c)
$$\sum_{n=1}^{\infty} \frac{4}{n^6} + \frac{(-6)^n}{7^{2n}}$$

- **4.** [8 Points] Use the Absolute Convergence Test to show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4 + 6}$ Converges.
- 5. [30 Points] Determine whether each of the given series is Absolutely Convergent, Conditionally Convergent, or Divergent. Name any Convergence Test(s) you use, and justify all of your work.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n^4 + 6}{n^6 + 4} \right)$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n^n \cdot (2n)!}{6^n (n!)^3}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{6n+4}$$

OPTIONAL BONUS

OPTIONAL BONUS #1 We have seen that the harmonic series is a **Divergent series whose terms do indeed approach zero** as $n \to \infty$. Show that the following series $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n}\right)$ is another series with this property.