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=> Series Converges by Integral Test

3(a) Diverges by nTDT because

him n+85n-0821 to
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31 As Converges -Series

#
original Series Converges by the Absolute ConvergenceTest (ACT)

OR 1
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3. Terms Decreasing Alternating Series Test
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Constant Multiple

Convergent Converges by Geometric Series TestofConvergentp-Series Series is Convergentp = 8)) with Irl1-tales
Bound Terms

cits - ins
Original Series Converges because the

Sum of Two Convergent Series is Convergent↳,nis18 Converge
s

> OR LCT

3) - 1 -z - 5 - T -- ...
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Constant Multiple of the Divergent Harmonic p-Series
with p= 1 i Divergent

Create a Series

4) (a) Diverges by nTDT using L'H Rule

2eExamples: Continue on to prove your case.

Switch to Related function in X for LH

-
Create aSeries

4) (b) Converges by Comparison Test . Need "Smaller than Converge" Comparison

Examples:in/

sample:q Converges p-Series =a

Bound Terms
-> Original Series also Converges by Comparison Test

notahe
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Create a Series

4(c) Absolutely Convergent by Ratio Test

!Examples:
↑Simplest?!

Sample:
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=> Series Converges Absolutely by Ratio Test

Create a Series

4(d) Alternating Series Convergent by ACT

SeeExamples:

Sample :

7114
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Bound Terms

I Note : LimitComparison
L n5+ nY+3

+ n=n+ 1
= msAct alsoWorks here

original Series
=> Absolute Series also Converges

Converges by the by the ComparisonTest
Absolute ConvergenceTest

https://goodnotes.com/


As,Su Convergesp-Series=5(a)(4 nstSt I

n+ Sn+8 n3
Finite

= IIn
eimStein Non-zero

n+n8 + 5 ned It0

=> Absolute Series alsoConverges bythe Limit ComparisonTest

=> Original Series is Absolutely Convergent by Definition

note : no need to test original series
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=> the Series Converges Absolutely
by the Ratio Test
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=> Absolute Series also Diverges by2
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3. Terms Decreasing
Original Series
Converges by the= Suf = bubuti sin+8 Alternating SeriesTest
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Original Series is

Conditionally Convergent by Definition-
or
, show Related Function
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