Math 121

• Please see the course webpage for the answer key.

Determine whether the given series is **Absolutely Convergent**, **Conditionally Conver-gent**, or **Divergent**. Name any Convergence Test(s) you use, and justify all of your work.

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^4 + 7}{n^7 + 4}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^n n! n^n}{n^3 (2n)!}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{4n + 7}$$

4.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n)! \ln n}{5^n (n!)^2}$$

5.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n + 5}{n^9 + 3}$$

6.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 6}$$

7.
$$\sum_{n=1}^{\infty} \frac{(3n)!}{(n!)^2 2^{4n} n^n}$$

8. Use **Two Different** methods to show that $\sum_{n=2}^{\infty} \frac{e^n}{\ln n}$ Diverges.

9. Use the Absolute Convergence Test to show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^6+7}$ Converges.

10. Use the Series
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
 to show that $\lim_{n \to \infty} \frac{n!}{n^n} = 0$.