Math 121 Self-Assessment Quiz #8 Answer Key

e Please see the course webpage for the answer key.

1. Find the Interval and Radius of Convergence for the folllowing power series. Analyze carefully
and with full justification.
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2. Find the Interval and Radius of Convergence for the folllowing power series. Analyze carefully
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3. Find the MacLaurin Series representation for each of the following functions. State the Radius
oo

of Convergence for each series. You answer should be in sigma notation g .
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