• Please see the course webpage for the answer key.

1. Find the Interval and Radius of Convergence for the folllowing power series. Analyze carefully and with full justification.

$$
\sum_{n=0}^{\infty} \frac{(-1)^n (7x-3)^n}{(n+1) \ 5^{n+1}}
$$

Use Ratio Test.

$$
L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1} (7x - 3)^{n+1}}{(n+2)5^{n+2}}}{\frac{(-1)^n (7x - 3)^n}{(n+1)5^{n+1}}} \right| = \lim_{n \to \infty} \left| \frac{(7x - 3)^{n+1}}{(7x - 3)^n} \right| \cdot \left(\frac{n+1}{n+2} \right) \cdot \frac{5^{n+1}}{5^{n+2}} = \frac{|7x - 3|}{5}
$$

The Ratio Test gives convergence for x when $\frac{|7x-3|}{5} < 1$ or $|7x-3| < 5$. That is $-5 < 7x - 3 < 5 \implies -2 < 7x < 8 \implies -\frac{2}{5}$ $\frac{2}{7}$ < x < $\frac{8}{7}$ 7 Endpoints:

$$
\bullet x = \frac{8}{7}
$$
 The original series becomes
$$
\sum_{n=0}^{\infty} \frac{(-1)^n \left(7\left(\frac{8}{7}\right) - 3\right)^n}{(n+1) 5^{n+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{(n+1) 5^{n+1}} = \frac{1}{5} \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}
$$
which is **convergent** because it's a constant multiple of a series
$$
\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1) 5^{n+1}}
$$
 which is itself convergent

 $n=0$ $\frac{(1)}{n+1}$ which is itself convergent by AST:

1. $b_n = \frac{1}{n-1}$ $\frac{1}{n+1} > 0$ 2. $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n+1}$ $\frac{1}{n+1} = 0$ 3. $b_{n+1} < b_n$ because $b_{n+1} = \frac{1}{n+1}$ $\frac{1}{n+2} < \frac{1}{n+2}$ $\frac{1}{n+1} = b_n.$ OR $f(x) = \frac{1}{x+1}$ has derivative $f'(x) = -\frac{1}{(x+1)}$ $\frac{1}{(x+1)^2}$ < 0 so the terms are decreasing. $\bullet x = -\frac{2}{7}$ $\frac{2}{7}$ The original series becomes $\sum_{n=0}^{\infty}$ $n=0$ $(-1)^n \left(7\left(-\frac{2}{7}\right)\right)$ 7 $-3)^n$ $\frac{(n+1) 5^{n+1}}{(n+1) 5^{n+1}}$ = \sum^{∞} $n=0$ $(-1)^n(-5)^n$ $(n+1)$ 5ⁿ⁺¹ $=\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n(-1)^n5^n$ $\frac{1}{(n+1)5^{n+1}}$ = \sum^{∞} $n=0$ $(-1)^{2n}$ $\frac{(-1)^{2n}}{5(n+1)} = \frac{1}{5}$ 5 \sum^{∞} $n=0$ 1 $n+1$ Here

$$
\sum_{n=0}^{\infty} \frac{1}{n+1} \approx \sum_{n=1}^{\infty} \frac{1}{n}
$$
 the divergent Harmonic Series, $p = 1$.

LCT: $\lim_{n\to\infty}$ 1 $n + 1$ $\frac{\overline{+1}}{1} = \lim_{n \to \infty} \frac{n}{n+1}$ n $\frac{n}{n+1} = 1$ which is *finite* and *non-zero*. Therefore, $\sum_{n=0}^{\infty}$ $n=0$ 1 $\frac{1}{n+1}$ is also divergent by LCT.

Also, the series $\frac{1}{5}$ \sum^{∞} $n=0$ 1 $\frac{1}{n+1}$ is **divergent** as a constant multiple of a divergent series above.

Finally, Interval of Convergence $I = \left(-\frac{2}{\pi}\right)$ $\frac{2}{7}, \frac{8}{7}$ 7 with Radius of Convergence $R = \frac{5}{5}$ $\frac{5}{7}$

2. Find the Interval and Radius of Convergence for the folllowing power series. Analyze carefully and with full justification.

$$
\sum_{n=1}^{\infty} \frac{(-1)^n \ln n \ (x+5)^n}{n^2 \ 4^n}
$$

Use Ratio Test.

$$
L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1} \ln(n+1) (x+5)^{n+1}}{(n+1)^2 4^{n+1}}}{\frac{(-1)^n \ln n (x+5)^n}{n^2 4^n}} \right|
$$

=
$$
\lim_{n \to \infty} \left| \frac{(x+5)^{n+1}}{(x+5)^n} \right| \cdot \left(\frac{n}{n+1} \right)^2 \cdot \left(\frac{\ln(n+1)}{\ln(n)} \right) \cdot \frac{4^n}{4^{n+1}} \stackrel{(*)}{=} \frac{L^2}{5} \frac{|x+5|}{5}
$$
 (see below)
The Ratio Test gives convergence for *x* when $\frac{|x+5|}{5} < 1$ or $|x+5| < 4$.

The Ratio Test gives convergence for x when $\frac{|x+5|}{4} < 1$ or $|x+5| < 4$. That is $-4 < x + 5 < 4 \implies -9 < x < -1$

Endpoints:

•
$$
x = -9
$$
 The original series becomes
$$
\sum_{n=1}^{\infty} \frac{(-1)^n \ln n (-4)^n}{n^2 4^n} = \sum_{n=1}^{\infty} \frac{(-1)^n \ln n (-1)^n 4^n}{n^2 4^n} = \sum_{n=1}^{\infty} \frac{\ln n}{n^2}
$$

We use the bound (as *n* gets large) $\ln n \le \sqrt{n}$ and bound the terms $\frac{\ln n}{n^2} < \frac{\sqrt{n}}{n^2} = \frac{1}{n^{\frac{3}{2}}}$.

We know $\sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^{\frac{3}{2}}}$ is a convergent *p*-series with $p = \frac{3}{2}$ $\frac{3}{2}$ > 1. The original (smaller) series is **conver**gent by \overline{CT} .

Endpoints:

•
$$
x = -1
$$
 The original series becomes
$$
\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n^2 4^n} = \sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n^2}
$$

Consider the absolute series $\sum_{n=1}^{\infty}$ $n=1$ $\ln n$ $\frac{n}{n^2}$ which was shown convergent above. Therefore, this orginal series converges by ACT.

Finally, Interval of Convergence $\boxed{I = [-9,-1]}$ with Radius of Convergence $\boxed{R=4}$

$$
(*)\lim_{n\to\infty}\frac{\ln(n+1)}{\ln n}=\lim_{x\to\infty}\frac{\ln(x+1)}{\ln x}\overset{\infty}{=}\lim_{x\to\infty}\frac{\frac{1}{x+1}}{\frac{1}{x}}=\lim_{x\to\infty}\frac{x}{x+1}\overset{\infty}{=}\lim_{x\to\infty}\frac{1}{1}=1
$$

3. Find the MacLaurin Series representation for each of the following functions. State the Radius of Convergence for each series. You answer should be in sigma notation \sum^{∞} $n=0$.

(a)
$$
f(x) = \frac{x^2}{1+5x} = \frac{x^2}{1-(-5x)} = x^2 \sum_{n=0}^{\infty} (-5x)^n = x^2 \sum_{n=0}^{\infty} (-1)^n 5^n x^n = \boxed{\sum_{n=0}^{\infty} (-1)^n 5^n x^{n+2}}
$$

\nHere need $|-5x| < 1$ or $|x| < \frac{1}{5}$, so $\boxed{R = \frac{1}{5}}$.

- (b) $f(x) = x^7 \sin(x^2)$ First, $\sin x = \sum_{n=1}^{\infty}$ $n=0$ $(-1)^n x^{2n+1}$ $\frac{1}{(2n+1)!}$. Here $R = \infty$. Then, $\sin(x^2) = \sum_{n=1}^{\infty}$ $n=0$ $(-1)^n(x^2)^{2n+1}$ $\frac{1}{(2n+1)!} =$ \sum^{∞} $n=0$ $(-1)^n x^{4n+2}$ $\frac{1}{(2n+1)!}$. $R = \infty$ still. Finally, $x^7 \sin(x^2) = x^7 \sum_{n=1}^{\infty}$ $n=0$ $(-1)^n x^{4n+2}$ $\frac{1}{(2n+1)!} =$ \sum^{∞} $n=0$ $(-1)^n x^{4n+9}$ $\frac{1}{(2n+1)!}$ $\boxed{R = \infty}$ still.
- (c) $f(x) = x \arctan(3x)$ First, $\arctan x = \sum_{n=1}^{\infty}$ $n=0$ $(-1)^n \frac{x^{2n+1}}{2}$ $\frac{x}{2n+1}$ Next, $\arctan(3x) = \sum_{n=0}^{\infty}$ $n=0$ $(-1)^n \frac{(3x)^{2n+1}}{2}$ $\frac{(3x)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty}$ $n=0$ $(-1)^n \frac{3^{2n+1}x^{2n+1}}{2n+1}$ $2n + 1$ Finally, $x \arctan(3x) = x \sum_{n=1}^{\infty}$ $n=0$ $(-1)^n \frac{3^{2n+1}x^{2n+1}}{2n+1}$ $\frac{n+1}{2n+1}x^{2n+1} = \sum_{n=0}^{\infty}$ $n=0$ $(-1)^n \frac{3^{2n+1}x^{2n+2}}{2n+1}$ $2n + 1$ Here need $|3x| < 1$ or $|x| < \frac{1}{2}$ $\frac{1}{3}$, so $R = \frac{1}{3}$ $\frac{1}{3}$

(d)
$$
f(x) = x^4 e^{-x^3}
$$

\nFirst, $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Here $R = \infty$.
\nThen, $e^{-x^3} = \sum_{n=0}^{\infty} \frac{(-x^3)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n}}{n!}$. $R = \infty$ still.

Finally,
$$
x^4 e^{-x^3} = x^4 \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n}}{n!} = \left[\sum_{n=0}^{\infty} \frac{(-1)^n x^{3n+4}}{n!} \right].
$$
 $\boxed{R = \infty}$ still.

(e)
$$
f(x) = x^3 \ln(1 + x^3)
$$

\nFirst $\ln(1 + x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$ Here $R = 1$.
\nSecond, $\ln(1 + x^3) = \sum_{n=0}^{\infty} \frac{(-1)^n (x^3)^{n+1}}{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n+3}}{n+1}$ $R = 1$ still.
\nFinally, $x^3 \ln(1 + x^3) = x^3 \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n+3}}{n+1} = \left[\sum_{n=0}^{\infty} \frac{(-1)^n x^{3n+6}}{n+1} \right]$ $\boxed{R = 1}$ still.

(f)
$$
f(x) = x^2 \cos(4x)
$$

\nFirst, $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$. Here $R = \infty$.
\nThen, $\cos(4x) = \sum_{n=0}^{\infty} \frac{(-1)^n (4x)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}$. $R = \infty$ still.
\nFinally, $x^2 \cos(4x) = x^2 \sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!} = \left[\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n+2}}{(2n)!} \right]$ $\boxed{R = \infty}$ still.