Math 121 Self-Assessment Quiz #6
Answer Key

e Please see the course webpage for the answer key.
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Here we have a geometric series with a = —— and r = 5 = o5 Note, it does converge since
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As a result, the sum is given by SUleir = 1 256 = £215 = -5 31 = | 131
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2. Use the Integral Test to determine and state whether the series Z —5  converges or
n
n=1
diverges. Justify all of your work.
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Consider the related function f(x) = H—Qx with
x
1. f(x) continuous for all x > 0
2. f(z) positive for z > 1
22 (1) —Inz(2z 1-21
3. f(x) decreasing because f'(x) = () (22) = BT 0 when z > e3.
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Check the improper integral
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The improper integral converges, and therefore the original series by the Integral Test
(IT).
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3. In each case determine whether the given series converges, or diverges. Name any conver-
gence test(s) you use, and justify all of your work.
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and the comparison series Z —; Is a convergent p-series with p =4 > 1.
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Finally, the original series (O.S.) ’Converges by CT |
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b. E (1 — > Diverges by n* term Divergence Test | because
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Bound the terms —; > — = —= and the comparison series Z — is a divergent p-series
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with p = 3 < 1. Finally, the Original Series ’Diverges by CT ‘
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Note that _— — = — which is the di t H ic p-seri ith p = 1.
ote tha nz_: BT 13 ;”5 nzz:lnvvlc is the divergent Harmonic p-series with p

Next,
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Check: nan;o i Jim B2 N = nlin;o T 3 = 3 which is finite and
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non-zero (0 < 3 < 00).

Therefore, these two series share the same convergence behavior, and the O.S. is also

’Divergent by Limit Comparison Test (LCT) ‘
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Note that Z ry Z == Z - which is the convergent p-series with p =5 > 1. Next,
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Check: lim —%F2  — 1jim = lim 2 — 1 which is finite and non-zero
n® n nt
(0<1< ).

Therefore, these two series share the same convergence behavior, and the O.S. is also

’ Convergent by Limit Comparison Test (LCT) ‘
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Try Ratio Test:
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The original series is ’ Absolutely Convergent by the Ratio Test ‘ and therefore | Convergent by ACT |.




