Math 121, Section(s) 01, Spring 2023

Homework #12

Due Wednesday, March 22nd in Gradescope by 11:59 pm ET

Goal: Exploring Convergence of Infinite Series. Focus on Integral Test, p-series, Comparison and Limit Comparison Test. We will also focus on fluency of training, using multiple tests.

FIRST: Read through and understand the following Examples. Determine whether the given Series Converges or Diverges. Justify with any Convergence Test(s).

Ex:
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$
 Related Function $f(x) = \frac{\ln x}{x}$ continuous $(x > 0)$, positive $(x > 1)$,

decreasing $f'(x) = \frac{1 - \ln x}{x^2} < 0$ for x > e. Study the Related Integral

$$\int_{2}^{\infty} \frac{\ln x}{x} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{\ln x}{x} dx = \lim_{t \to \infty} \int_{\ln 2}^{\ln t} u du = \lim_{t \to \infty} \frac{u^2}{2} \Big|_{\ln 2}^{\ln t} = \lim_{t \to \infty} \frac{(\ln t)^2}{2} - \frac{(\ln 2)^2}{2} = \infty$$

$$u = \ln x$$

$$du = \frac{1}{x} dx$$

$$x = 2 \Rightarrow u = \ln 2$$

$$x = t \Rightarrow u = \ln t$$

Therefore, the Improper Integal Diverges. As a result, the Original Series also **Diverges by** the Integral Test.

Ex:
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 7} \approx \sum_{n=1}^{\infty} \frac{1}{n^3} \quad \leftarrow \text{ Comparison Series: Convergent } p \text{-series } p = 3 > 1$$

Bound Terms

 $\frac{1}{n^3+7} \leq \frac{1}{n^3}$. Therefore, the Original Series also Converges by the Comparison Test.

Ex: $\sum_{n=1}^{\infty} \frac{n^3 + 2}{n^4 + 8} \approx \sum_{n=1}^{\infty} \frac{n^3}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n} \leftarrow \text{Comparison Series: Divergent } p\text{-series } p = 1$ Next check: $\lim_{n \to \infty} \frac{\frac{n^3 + 2}{n^4 + 8}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^4 + 2n}{n^4 + 8} \frac{\left(\frac{1}{n^4}\right)}{\left(\frac{1}{n^4}\right)} = \lim_{n \to \infty} \frac{\frac{1 + \frac{2}{n^3}}{n^3}}{\frac{1}{1 + \frac{8}{n^3}}} = 1$ Finite and Non-Zero

Therefore, the Original Series also Diverges by the Limit Comparision Test.

Continue to NEXT Page for HW problems.

Use the Integral Test to determine whether the given series Converges or Diverges. You do **NOT** need to check the 3 pre-conditions for the Integral Test this time.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 2. $\sum_{n=1}^{\infty} \frac{1}{n^3}$ 3. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ 4. $\sum_{n=1}^{\infty} \frac{n}{e^n}$

5. Consider $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$. Use **two** Different methods, namely the Integral Test (no pre-Condition check needed) and the Comparison Test, to prove that this series Converges.

Determine if the series Converges or Diverges using either the Comparison **OR** Limit Comparison Test.

6.
$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$
 7. $\sum_{n=1}^{\infty} \frac{n^2+5}{n^3}$ 8. $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n+2}}$ 9. $\sum_{n=1}^{\infty} \frac{n^2+7}{n^7+2}$

10. Consider $\sum_{n=1}^{\infty} \frac{5n^2 + n}{n^4}$. Use **two** Different methods to prove that this series Converges. Use the Limit Comparison Test and then a *split-split* algebra technique into *p*-series pieces.

Determine whether the given series Converges or Diverges. Justify.

11.
$$\sum_{n=1}^{\infty} \sin^2\left(\frac{\pi n^4 + 1}{6n^4 + 5}\right)$$
 12. $\sum_{n=1}^{\infty} \frac{\sin^2\left(\pi n^4 + 1\right)}{6n^4 + 5}$ 13. $\sum_{n=1}^{\infty} \frac{7}{n^9} + \frac{7^n}{9^n}$

REVIEW

14.
$$\sum_{n=1}^{\infty} n^6 + 6$$
 15. $\sum_{n=1}^{\infty} \frac{n^6 + 6}{n^6 + 1}$ 16. $\sum_{n=1}^{\infty} \frac{1}{n^6 + 1}$

REGULAR OFFICE HOURS

Monday: 12:00-3:00 pm

 $6{:}00{-}7{:}30~\mathrm{pm}$ TA Admire, SMUDD 204

Tuesday: 1:00–4:00 pm

6–7:30 pm TA Admire, SMUDD 204

Wednesday: 1:00-3:00 pm

 $7{:}30{-}9{:}00~\mathrm{pm}$ TA Aidee, SMUDD 204

Thursday: none for Professor

6:00–7:30 pm TA Ali, SMUDD 204

 $7{:}30{-}9{:}00~\mathrm{pm}$ TA Aidee, SMUDD 204

Friday: 12:00-2:00 pm

6:00–7:30 pm TA Ali, SMUDD 204

Train your Convergence Tests Daily