

Math 121 Exam 3 April 28, 2023

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{3\ln 3}$, $\arctan\sqrt{3}$ or $\cosh(\ln 3)$ should be simplified.
- Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)
- **1.** [16 Points] Find the **Interval** and **Radius** of Convergence for $\sum_{n=1}^{\infty} \frac{(-1)^n (5x+1)^n}{(5n+1) \cdot 4^n}$ Analyze carefully and with full justification.
- **2.** [22 Points] Find the MacLaurin Series for each of the functions. Also **STATE** the Radius of Convergence for each series. Answers should be in sigma notation $\sum_{n=0}^{\infty}$. Simplify.
- (a) $\ln\left(1+\frac{x^2}{4}\right)$
- (b) $6x^3 \arctan(6x)$
- (c) $\frac{d}{dx} \left(8x^4 \sin(8x) \right)$
- (d) $\int x^3 e^{-x^4} dx$
- **3.** [16 Points] (a) Use Series to Estimate $\int_0^1 x^2 \cos(x^3) dx$ with error less than $\frac{1}{50}$. Hint: $(24) \cdot (15) = 360$
- (b) Estimate $\frac{1}{e}$ with error less than $\frac{1}{100}$

4. [24 Points] Find the **sum** for each of the following convergent series. Simplify, if possible.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{9^n (2n+1)!}$$
 (b) $-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \dots$ (c)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2n+1}}{4! (2n)!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \ 2^{n+1} (\ln 3)^n}{5 \cdot n!}$$
 (e) $-\frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \dots$ (f) $\pi^2 - \frac{\pi^4}{3!} + \frac{\pi^6}{5!} - \frac{\pi^8}{7!} + \dots$

- **5.** [10 Points] Use Series to compute the following Limit $\lim_{x\to 0} \frac{1-\cos(2x)}{e^{-x}-1+x}$
- **6.** [12 Points] Find the MacLaurin Series Representation for $ln(9 + x^2)$.

Hint:
$$\ln(9+x^2) = \int \frac{2x}{9+x^2} dx$$
. Yes, solve for C

OPTIONAL BONUS

OPTIONAL BONUS #1 Compute
$$\sum_{n=0}^{\infty} \frac{n}{3^n}$$

OPTIONAL BONUS #2

Determine the 27^{th} and 28^{th} derivatives for $f(x) = x^3 \arctan(x^5)$ evaluated at x = 0. You do not need to simplify your answers here.