
Infinite Series Review

Math 121

It is complicated to determine whether a given series
∑

an converges. Some of the main difficul-

ties for deciding convergence, are maybe deciding which convergence test to use, how to apply it
correctly, and finally, how to make the correct conclusion based on the results of your test(s). Here
are some basic guidelines:

• Geometric Series Test

– If the series is geometric like
∞
∑

n=0

arn or
∞
∑

n=1

arn−1 = a+ ar + ar2 + . . .,

then

1. if |r| < 1, it converges to
a

1− r
2. if |r| ≥ 1, it diverges.

USES: Only for geometric series. This is one of the few times that you can actually
compute the sum of the series, rather than just make a conclusion about convergence.
Often used together with one of the comparison tests.

RESTRICTIONS: Only works for Geometric Series.

• p-Series Test or p-Test

– If the series is a p-series of the form
∞
∑

n=1

1

np
,

then

1. if p > 1, it converges

2. if p ≤ 1 it diverges.

USES: Only for p-series. Most commonly used together with one of the comparison
tests. Proved using the Integral Test.

RESTRICTIONS: Only for series exactly of this form
∑ 1

np
.

• nth Term Divergence Test

– Consider a series
∞
∑

n=1

an, then

1. if lim
n→∞

an 6= 0 or DNE, then it diverges

2. if lim
n→∞

an = 0 the test is inconclusive.

USES: If you are not sure how to approach a series, this is a good test to try first. Or
if you notice that the terms just don’t approach 0, apply this test and your work here
will be done.

RESTRICTIONS: Only helpful for series whose terms do not go to zero.
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• (Direct) Comparison Test

– Consider a series
∑

an. First find a series
∑

bn with which to compare
∑

an. Suppose

that both
∑

an and
∑

bn have positive terms. Then

1. if
∑

bn is convergent and an ≤ bn for all n, then
∑

an is also convergent.

2. if
∑

bn is divergent and an ≥ bn for all n, then
∑

an is also divergent.

USES: To reduce a meaty fraction term and compare directly to a nicer form, as geo-
metric or p series. The idea here is an is say better (maybe a lot better) than bn in terms
of size, or an is worse than bn in terms of size. Best for bounded pieces like sin2 n ≤ 1,
lnn < n, lnn <

√
n, or arctann < π

2
. Or good when you have a direct and helpful size

comparison at hand.

RESTRICTIONS: Only used for positive term series. Be careful about which way the
size implications go.

• Limit Comparison Test

– Suppose that
∑

an and
∑

bn are series with positive terms. If

lim
n→∞

an

bn
= c

where c is finite, 0 < c < ∞, then either both series converge or both diverge.

USES: To reduce a meaty fraction term and compare to a nicer form, as geometric or p

series. The idea here is
∑

an and
∑

bn share the same behavior. Best for fractional

terms like an =
polynomial

polynomial
. Examine dominant terms of the numerator or denominator

when deciding which series to compare with. Use LCT to eliminate extraneous terms
(lower orders of magnitude).

RESTRICTIONS: Only used for positive term series.

• Ratio Test

– Consider a series
∞
∑

n=1

an. Then

1. if L = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1, then

∞
∑

n=1

an is absolutely convergent.

2. if L = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

> 1, then
∞
∑

n=1

an is divergent.

3. if L = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= 1, then the Ratio Test is inconclusive.

USES: Mostly useful for series involving exponentials (constants raised to powers or
nn) or factorials, or combinations of those. If your series already has strictly positive
terms, then absolute convergence is just convergence. If your series does not have strictly
positive terms, then absolute convergence implies convergence. This result is strong in
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the sense that it gives you divergence of the original series
∞
∑

n=1

an, not just
∞
∑

n=1

|an|. Not

helpful when your terms contain just polynomials or just natural logs.

RESTRICTIONS: The limit L must exist or equal ∞, and it must not equal 1.

• Root Test (not on this Exam #2)

– Consider a series
∞
∑

n=1

an. Then

1. if L = lim
n→∞

n

√

|an| < 1, then

∞
∑

n=1

an is absolutely convergent.

2. if L = lim
n→∞

n

√

|an| > 1, then
∞
∑

n=1

an is divergent.

3. if L = lim
n→∞

n

√

|an| = 1, then the Root Test is inconclusive.

USES: Mostly for series involving complicated things raised to the power of n. But in
most cases where the root test can be used, the ratio test can also be used.

RESTRICTIONS: The limit L must exist or equal ∞, and it must not equal 1.

• Absolute Convergence Test

– Consider a series
∞
∑

n=1

an. If
∞
∑

n=1

|an| converges, then
∞
∑

n=1

an converges.

That is, absolute convergence implies convergence.

USES: Useful if the absolute series
∞
∑

n=1

|an| is easier to examine. Helps you sometimes

avoid using the Alternating Series test (see below). Might answer a question about
Absolute Convergence immediately.

RESTRICTIONS: Doesn’t completely help you answer a question about conditional

convergence, since if
∞
∑

n=1

|an| diverges, then we know nothing about the original
∞
∑

n=1

an.

This is slightly different from the divergence conclusion in the Ratio Test.

• Alternating Series Test

– Consider a series
∞
∑

n=1

(−1)n+1bn with terms alternating in sign. Then if the following

three conditions are all satisfied:

1. if each bn > 0

2. if lim
n→∞

bn = 0

3. if bn+1 ≤ bn,

then the series
∞
∑

n=1

(−1)n+1bn converges.
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USES: Given an alternating series, use this, UNLESS the alternating series is quickly
examined using the Ratio Test or as the related absolute series with the Absolute Con-

vergence Test. If the absolute series
∞
∑

n=1

∣

∣(−1)n+1bn
∣

∣, which equals
∞
∑

n=1

bn, converges,

then you automatically know that the original series itself converges, by the Absolute
Convergence test. When you do use AST, check condition 2; if it fails, the series already
was diverging by the nth term divergence test. Condition 3 is often verified by an obvious
size argument or by taking the derivative of the related function and seeing that it is
negative, and hence the terms are decreasing.

RESTRICTIONS: For alternating series only.

• Integral Test

– Consider a series
∞
∑

n=1

an. Suppose f is a continuous, positive, decreasing function on

[1,∞) and let an = f(n). Then the series
∞
∑

n=1

an converges if and only if the improper

integral

∫

∞

1

f(x) dx is convergent. That is,

1. if

∫

∞

1

f(x) dx is convergent, then
∑

an is convergent.

2. if

∫

∞

1

f(x) dx is divergent, then
∑

an is divergent.

USES: Used to prove the p-Test, but once you have that, it isn’t used that often. Often

used when no other test works. Used on series like
∑ 1

n lnn
or

∑ 1

n(lnn)p
. You can

remember the result by thinking that the related improper integral and the series share
the same behavior, both converge or both diverge. This test can be used on many series,
but often those series can be examined more easily with a different inspecting test.

RESTRICTIONS: Only works for positive, decreasing series.

• Note The above quidelines are not listed in any particular order. Be familiar with the
conditions and conclusions for each test. Unfortunately, they are all very similar looking. It
may also take more than one try at a test to figure out a given series. Sometimes it even
takes a combination of tests to make a final conclusion about convergence.

Think of these tests the same way as say the TB test at the doctor’s office. If you want to
know if you have TB, take the seemingly irrelevant TB test (and if doesn’t seem irrelevant
to you, try explaining to a four-year-old why getting a puncture in the arm tells whether
you have a disease of the lungs). In the same way, if you want to know whether a series
converges, apply one of the seemingly irrelevant convergence test. The remaining problem is,
you have to figure out which test to use; for a given problem, probably only a few tests are
even applicable, and maybe only one will actually give you a conclusive result.
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