Math 121, Section 01, Spring 2022

Homework #18

Due Wednesday, April 27th in Gradescope by 11:59 pm ET

Goal: Exploring Estimating Values and Definite Integrals using the Alternating Series Estimation Theorem. Also some review of Interval and Radius of Convergence

- 1. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{20}$. Justify.
- 2. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{100}$. Justify. (Can reuse work from 1)
- 3. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{500}$. Justify. (Can reuse work from 1)
- 4. Use Series to Estimate $\sin(1)$ with error less than $\frac{1}{1000}$. Justify.
- 5. Use Series to Estimate $e^{-\frac{1}{3}}$ with error less than $\frac{1}{100}$. Justify.
- 6. Use Series to Estimate $\arctan\left(\frac{1}{2}\right)$ with error less than $\frac{1}{100}$. Justify.
- 7. Use Series to Estimate $\int_0^1 x \ln(1+x^3) dx$ with error less than $\frac{1}{20}$. Justify.
- 8. Use Series to Estimate $\int_0^1 x \sin(x^2) dx$ with error less than $\frac{1}{1000}$. Justify.

Review: Find the Interval and Radius of Convergence for each of the following.

9.
$$\sum_{n=1}^{\infty} (n!)^2 (3x-7)^n$$

9.
$$\sum_{n=1}^{\infty} (n!)^2 (3x-7)^n$$
 10.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (5x-2)^n}{n^3 8^n}$$
 11.
$$\sum_{n=1}^{\infty} \frac{(x-7)^n}{n! \sqrt{n}}$$

11.
$$\sum_{n=1}^{\infty} \frac{(x-7)^n}{n! \sqrt{n}}$$

REGULAR OFFICE HOURS

Sunday: 6-7:30 pm TA Nico, SMUDD 207

Monday: 1:00–3:00 pm

6-7:30 pm TA Daksha, SMUDD 207

7:30–9:00 pm TA Karime, SMUDD 207

Tuesday: 12:00–4:00 pm

6-7:30 pm TA Ian, SMUDD 207

7:30–9:00 pm TA Nico, SMUDD 207

Wednesday: 1:00-3:00 pm

9–10:30 pm TA Daksha, SMUDD 207

Thursday: none for Professor

6–7:30 pm TA Ian, SMUDD 207

7:30–9:00 pm TA Karime, SMUDD 207

Friday: 12:00–2:00 pm

Chase the fine details and make a full justification.

Almost vacation!