
Power Series

We will review the relevant Definitions, Calculus, Strategies, Examples, and Applications.

Definition: A Power Series Centered at a has the following form:

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + . . .

where a is a constant value and the Coefficients cn may depend on n. Here x is the input
variable. Note: Convergent for x = a.

Definition: A Power Series Centered at a = 0 has the following form:

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + . . .

where the Coefficients cn may depend on n. Here x is the input variable. Note: Convergent
for x = 0.

Think: Power Series are Infinite Versions of Polynomials. We will study their Properties
and Applications.

First, we can think of Power Series as functions and plug in a specific finite Real x-value.
Then the Series becomes an Infinite Series, a sum of infinitely many real numbers.

For Example,
∞∑

n=0

xn = 1 + x+ x2 + x3 + . . . is a Power Series Centered at 0.

When we plug in x = 2 the Power Series becomes an Infinite Series
∞∑

n=0

2n which is a Divergent

Geometric Series |r| = 2 > 1. Hence x = 2 is not in the Domain.

However, when we plug in x =
1

4
the Power Series becomes an Infinite Series

∞∑
n=0

(
1

4

)n

which is a Convergent Geometric Series |r| = 1

4
< 1. Hence, x =

1

4
is in the Domain.

Question: What is the Domain of these function-like Power Series? That is, what is the
collection of finite Real numbers that can be plugged into the Power Series and keep it finite,
meaning Convergent as a series.

Definition: The Interval of Convergence is the collection of finite Real numbers at which
the Power Series is a finite Infinite Series. That is, the Domain of the Power Series.

Definition: The Radius of Convergence is half the length of the full Interval of Conver-
gence. This essentially captures the size of the Domain Interval.
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Domains

We have a full classification of the Domain of a Power Series
∞∑

n=0

cn(x − a)n. One of the

following Three things must happen:

1. The Power Series converges only at the Center point x = a.

I = {a}
R = 0

2. The Power Series converges for all Real numbers

I = (−∞,∞)

R =∞

3. The Power Series converges on a finite Interval Centered at the Center Point a and
possibly one or both of the endpoints.

I = (a−R, a+ r) or I = (a−R, a+ r] or I = [a−R, a+ r) or I = [a−R, a+ r]

Radius = R

To find the Domain of a Power Series we have two main options:

1. If the Series is Geometric, use the Geometric Series Test. This is beneficial since the Ge-
ometric Series Test automatically gives Divergence at the endpoints of the Domain Interval.
You do not need to test endpoints for the Geometric Examples.

2. Run the Ratio Test. Here you must manually check convergence at the endpoints for
the finite interval case, since the Ratio Test is Inconclusive at the endpoints, that is, where
L = 1.

Example: Find the Interval and Radius of Convergence for the following power series.
Analyze carefully and with full justification.

∞∑
n=0

(x− 6)n

7n

The Geometric Series Test yields Convergence for

∣∣∣∣x− 6

7

∣∣∣∣ < 1 and Divergence otherwise.

Here we need |x − 6| < 7 ⇒ −7 < x − 6 < 7 ⇒ −1 < x < 13 and finally, the Interval
of Convergence is given by I = (−1, 13) and the Radius is given by R = 7. Note that the
Center of the Domain Interval is indeed the Center of the Power Series, x = 6 here. Cool!
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We will now present an example of each of the three Domain options, using the Ratio Test.

Example (Finite Interval): Find the Interval and Radius of Convergence for the following
power series. Analyze carefully and with full justification.

∞∑
n=1

(−1)n (9x− 4)n

(n+ 1) 5n

Use Ratio Test.

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+1(9x− 4)n+1

(n+ 2) 5n+1

(−1)n(9x− 4)n

(n+ 1) 5n

∣∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣(9x− 4)n+1

(9x− 4)n

∣∣∣∣ ·

�
�
���

1
n+ 1

n+ 2

 · 5n

5n+1

=
|9x− 4|

5

The Ratio Test gives convergence for x when
|9x− 4|

5
< 1 or |9x− 4| < 5.

That is −5 < 9x− 4 < 5 =⇒ −1 < 9x < 9 =⇒ −1

9
< x < 1

Manually test Convergence (where L = 1) at the Endpoints:

• Take x = 1. The original series becomes
∞∑

n=1

(−1)n (9(1)− 4)n

(n+ 1) 5n

=
∞∑

n=1

(−1)n5n

(n+ 1) 5n
=
∞∑

n=1

(−1)n

n+ 1
which is convergent by AST:

1. bn =
1

n+ 1
> 0

2. lim
n→∞

bn = lim
n→∞

1

n+ 1
= 0

3. bn+1 =
1

n+ 2
<

1

n+ 1
= bn or becau se f(x) =

1

x+ 1
has derivative f ′(x) = − 1

(x+ 1)2
<

0 so the terms are decreasing.

** Turn the page for the other endpoint check **
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Other endpoint:

• Take x = −1

9
. The original series becomes

∞∑
n=1

(−1)n

(
9

(
−1

9

)
− 4

)n

(n+ 1) 5n
=
∞∑

n=1

(−1)n(−5)n

(n+ 1) 5n

=
∞∑

n=1

(−1)n(−1)n5n

(n+ 1)5n
=
∞∑

n=1

�
��
�* 1

(−1)�
�* even

2n

n+ 1
=
∞∑

n=1

1

n+ 1
≈

∞∑
n=1

1

n
Div. harmonic p-series p = 1.

LCT: lim
n→∞

1

n+ 1
1

n

= lim
n→∞

n

n+ 1
= lim

n→∞

1

1 +
1

n

= 1 which is finite and non-zero.

Therefore,
∞∑

n=1

1

n+ 1
is also divergent by LCT.

Finally, Interval of Convergence I =

(
−1

9
, 1

]
with Radius of Convergence R =

5

9
.

Example (Infinite Interval): Find the Interval and Radius of Convergence for the following
power series. Analyze carefully and with full justification.

∞∑
n=1

(−1)n xn

(2n+ 1)!

Use Ratio Test.

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
(−1)n+1xn+1

(2(n+ 1)!

(−1)nxn

(2n)!

∣∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ · ( (2n)!

(2n+ 2)!

)

= lim
n→∞���

��
���

��:0|x|

���
��:∞(2n+ 2)���

��:∞(2n+ 1)
= 0 < 1

So the Series Converges by the Ratio Test for all Real numbers x.

Finally, the Interval of Convergence is I = (−∞,∞) and the Radius is R =∞ .
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Example (Collapsed to a (Center) point Interval): Find the Interval and Radius of Con-
vergence for the following power series. Analyze carefully and with full justification.

∞∑
n=1

(3n)!(x− 6)n

Use Ratio Test.

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(3(n+ 1))!(x− 6)n+1

(3n)!(x− 6)n

∣∣∣∣ = lim
n→∞

∣∣∣∣(x− 6)n+1

(x− 6)n

∣∣∣∣ · ((3n+ 3)!

(3n)!

)
= lim

n→∞
|x− 6|����

�:∞
(3n+ 3)���

��:∞(3n+ 2)���
��:∞(3n+ 1) =∞ > 1

So the Series Diverges by the Ratio Test for all Real numbers x UNLESS

x− 6 = 0⇒ x = 6 (when L = 0 < 1 which yields convergence by the Ratio Test).

Finally, the Interval of Convergence is I = {6} and the Radius is R = 0 .

Term-by-Term Differentation and Integration of Power Series

Next, we can Differentiate or Integrate Power Series Term-by-Term. That is, given a Power

Series
∞∑

n=0

cnx
n with Radius of Convergence R > 0 then we can compute its Derivative or

Integral and the Radius remains unchanged. (The convergence may change at the endpoints.)

d

dx

∞∑
n=0

cnx
n =

∞∑
n=0

cnnx
n−1 and

∫ ∞∑
n=0

cnx
n dx =

∞∑
n=0

cn
xn+1

n+ 1
+ C

Example:

d

dx

∞∑
n=0

(−1)n xn

n!
=
∞∑

n=0

(−1)n n xn−1

n!

Example:∫ ∞∑
n=0

(−1)n x4n+2

(2n)!
dx =

∞∑
n=0

(−1)n x4n+3

(2n)! (4n+ 3)
+ C
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Power Series Representations for Functions

Question: Does a function have a Power Series Representation?

We start with the Geometric Series form:

1

1− x
=
∞∑

n=0

xn = 1 + x+ x2 + x3 + . . . valid for |x| < 1 by the Geometric Series Test

Next, we can extend this formula to find new Power Series for other functions:

Example:
1

1 + x
=

1

1− (−x)
=
∞∑

n=0

(−x)n =
∞∑

n=0

(−1)nxn = 1− x+ x2 − x3 + x4 + . . .

valid when | − x| = |x| < 1 using the Geometric Series Test. Here the Radius is R = 1.

Example:
1

1 + x2
=

1

1− (−x2)
=
∞∑

n=0

(
−x2

)n
=
∞∑

n=0

(−1)nx2n = 1− x2 + x4 − x6 + x8 + . . .

valid when | − x2| = |x2| < 1 or |x| < 1 using the Geometric Series Test. Here the Radius is
R = 1.

Example:
1

1 + 5x
=

1

1− (−5x)
=
∞∑

n=0

(−5x)n =
∞∑

n=0

(−1)n5nxn = 1− 5x+ 52x2 − 53x3 + . . .

valid when |−5x| < 1 or |x| < 1

5
using the Geometric Series Test. Here the Radius is R =

1

5
.

Example:
x3

6 + x
= x3

(
1

6− (−x)

)
=
x3

6

 1

1−
(
−x

6

)
 =

x3

6

(
∞∑

n=0

(
−x

6

)n
)

=
x3

6

∞∑
n=0

(−1)nxn

6n
=
∞∑

n=0

(−1)nxn+3

6n+1

valid when
∣∣∣−x

6

∣∣∣ < 1 or |x| < 6 using the Geometric Series Test. Here the Radius is R = 6.
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More Power Series Representations for functions using Intergation

Next, we explored the Power Series for ln(1 +x) and arctanx. We derived these Series using
Integration of a known Power Series (derived from the Geometric Series Formula)

ln(1 + x) =

∫
�
�
���

P.S.
1

1 + x
dx =

∫
1

1− (−x)
dx =

∫ ∞∑
n=0

(−x)n dx =

∫ ∞∑
n=0

(−1)nxn dx

=
∞∑

n=0

(−1)n x
n+1

n+ 1
+ C = x− x2

2
+
x3

3
− x4

4
+ . . .+ C

Expanding the Power Series a few terms and plugging in the Center point value x = 0 we
can show that C = 0 here

0 = ln(1 + 0) = 0− 0 + 0− 0 + . . .+ C → C = 0

Finally, ln(1 + x) =
∞∑

n=0

(−1)n x
n+1

n+ 1

Next, arctanx =

∫
�
�
�
�>

P.S.
1

1 + x2
dx =

∫
1

1− (−x2)
dx =

∫ ∞∑
n=0

(
−x2

)n
dx =

∫ ∞∑
n=0

(−1)nx2n dx

=
∞∑

n=0

(−1)n x
2n+1

2n+ 1
+ C = x− x3

3
+
x5

5
− x7

7
+ . . .+ C

Expanding the Power Series a few terms and plugging in the Center point value x = 0 we
can show that C = 0 here

0 = arctan 0 = 0− 0 + 0− 0 + . . .+ C → C = 0

Finally, arctanx =
∞∑

n=0

(−1)n x
2n+1

2n+ 1

Taylor and MacLaurin Series

We’ve been able to find Power Series Representations for a restricted class of functions,
related to Geometric Series. Now we want to try and generalize.

Definition: The Taylor Series for a function f at a is given by

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .
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Definition: For the special case when a = 0, the Taylor Series centered at a = 0 is called the
MacLaurin Series for a function f at 0. It is given by

∞∑
n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .

We used this Definition (or Chart Method) to gain Power Series for sin x and ex. Review
these computations. We differentiated the P.S. for sin x to find P.S for cosx.

Key Fact: If a function f has a Power Series centered at a given a, then the Series must be
the Taylor Series (or MacLaurin if a = 0).

Here is a chart of the 6 MacLaurin Series that we derived:

ex =
∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . .

sinx =
∞∑

n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
+ . . .

cosx =
∞∑

n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ . . .

1

1− x
=
∞∑

n=0

xn = 1 + x+ x2 + x3 + x4 + x5 + . . .

arctanx =
∞∑

n=0

(−1)n x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+
x9

9
+ . . .

ln(1 + x) =
∞∑

n=0

(−1)n xn+1

n+ 1
= x− x2

2
+
x3

3
− x4

4
+
x5

5
+ . . .
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Helpful Tip: There are 4 Main Options for finding a functions Power Series representation:

1. Using Substitution into a known Power Series
2. Differentiating a known Power Series.
3. Integrating a known Power Series. Sometimes messier with solving for +C.
4. Using the Definition above, sometimes known as the Chart Method.
→ This option has its limitations if the derivatives are complicated.

Think about which options we have used so far for each function.

Fun Challenges:

• See if you can use 3 options to find the MacLaurin Series for cosx or sin x.

• See if you can use all 4 options to find the MacLaurin Series for cosh x or sinh x.

Applications We investigated several Applications for Power Series.

• New Series

• New Indefinite Integrals

• New Sums

• New Estimates using the Alternating Series Estimation Theorem

• New Limits

New Series, using substitution into a known Series

Example:

x5 arctan(3x) = x5

∞∑
n=0

(−1)n (3x)2n+1

2n+ 1
= x5

∞∑
n=0

(−1)n 32n+1x2n+1

2n+ 1
=

∞∑
n=0

(−1)n 32n+1x2n+6

2n+ 1

Here need |3x| < 1 or |x| < 1

3
, so R =

1

3
.

Example:
x

1 + 7x
= x

(
1

1− (−7x)

)
= x

∞∑
n=0

(−7x)n = x
∞∑

n=0

(−1)n7nxn =
∞∑

n=0

(−1)n7nxn+1

Here need | − 7x| < 1 or |x| < 1

7
, so R =

1

7
.
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New Indefinite Integrals

Example: Use Series to compute

∫
x4e−x2

dx∫
���

�:P.S.
x4e−x2

dx =

∫
x4

∞∑
n=0

(−x2)n

n!
dx =

∫
x4

∞∑
n=0

(−1)nx2n

n!
dx =

∫ ∞∑
n=0

(−1)nx2n+4

n!
dx

=
∞∑

n=0

(−1)nx2n+5

(n!)(2n+ 5)
+ C

Note: Here we can leave the +C since we don’t have a given function on the left side of the
equality chain to plug into to solve for +C.

New Sums: Pattern matching in reverse

Example:
∞∑

n=0

(−1)n π2n

(36)n (2n+ 1)!
=
∞∑

n=0

(−1)n π2n

(6)2n (2n+ 1)!
=
∞∑

n=0

(−1)n
(π

6

)2n

(2n+ 1)!

=
∞∑

n=0

(−1)n
(π

6

)2n

(2n+ 1)!
·

 π

6
π

6

 =
6

π

∞∑
n=0

(−1)n
(π

6

)2n+1

(2n+ 1)!
=

6

π
sin
(π

6

)
=

6

π

(
1

2

)
=

3

π

Example:
∞∑

n=0

(−1)n (ln 8)n

3n+1 n!
=

1

3

∞∑
n=0

(−1)n (ln 8)n

3n n!
=

1

3

∞∑
n=0

(
− ln 8

3

)n

n!

=
1

3
e

0@− ln 8

3

1A
=

1

3
e
ln
“
8−

1
3

”
=

1

3

(
8−

1
3

)
=

1

3

(
1

8
1
3

)
=

1

3

(
1

2

)
=

1

6

Example:
∞∑

n=0

(−1)n π2n

24n (2n)!
=
∞∑

n=0

(−1)n π2n

(22)2n (2n)!
=
∞∑

n=0

(−1)n π2n

42n (2n)!
=
∞∑

n=0

(−1)n
(π

4

)2n

(2n)!

= cos
(π

4

)
=

1√
2

=

√
2

2

Example: π − π3

3!
+
π5

5!
− π7

7!
+
π9

9!
− . . . = sinπ = 0
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Example: −π
2

2!
+
π4

4!
− π6

6!
+
π8

8!
− . . . = (cosπ)− 1 = −1− 1 = −2

Example: −1+
1

2
− 1

3
+

1

4
− 1

5
+ . . . = −

(
1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

)
= − ln(1+1)) = − ln 2

New Estimates for Values of Alternating Series

Example: Estimate cos(1) with error less than
1

100
. Justify.

cos(1) =
∞∑

n=0

(−1)n(1)2n

(2n)!
= 1− 1

2!
+

1

4!
− 1

6!
+ . . . = 1− 1

2
+

1

24
− 1

720
+ . . .

≈ 1− 1

2
+

1

24
=

24

24
− 12

24
+

1

24
=

13

24
← estimate

Using the Alternating Series Estimation Theorem (ASET), we can approximate the actual

sum with only the first three terms as
13

24
, with error at most the absolute value of the first

neglected term,
1

6!
. Here

1

720
<

1

100
as desired.

New Estimates for Definite Integrals

Example: Estimate

∫ 1

0

x3 ln(1 + x3) dx with error less than
1

30
. Justify.

∫ 1

0

x3 ln(1 + x3) dx =

∫ 1

0

∞∑
n=0

(−1)nx3n+6

n+ 1
dx =

∞∑
n=0

(−1)nx3n+7

(n+ 1)(3n+ 7)

∣∣∣∣1
0

=
x7

1 · 7
− x10

2 · 10
+

x13

3 · 13
− . . .

∣∣∣∣1
0

=
x7

7
− x10

20
+
x13

39
− . . .

∣∣∣∣1
0

=
1

7
− 1

20
+

1

39
− . . .− (0− 0 + 0− . . .)

≈ 1

7
− 1

20
=

20

140
− 7

140
=

13

140
← estimate

Using the Alternating Series Estimation Theorem (ASET), we can approximate the actual
sum with only the first two terms, and the error from the actual sum will be at most the

absolute value of the next (first neglected) term,
1

39
. Here

1

39
<

1

30
as desired.
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Example: Estimate

∫ 1

0

x sin
(
x2
)
dx with error less than

1

1000
. Justify.

∫ 1

0

x sin(x2) dx =

∫ 1

0

x

∞∑
n=0

(−1)n (x2)
2n+1

(2n+ 1)!
dx =

∫ 1

0

x
∞∑

n=0

(−1)nx4n+2

(2n+ 1)!
dx

=

∫ 1

0

∞∑
n=0

(−1)nx4n+3

(2n+ 1)!
dx =

∞∑
n=0

(−1)nx4n+4

(2n+ 1)!(4n+ 4)

∣∣∣∣1
0

=
x4

1 · 4
− x8

3! · 8
+

x12

5! · (12)
− . . .

∣∣∣∣1
0

=

(
1

4
− 1

48
+

1

1440
− . . .

)
− (0− 0 + 0− . . .) ≈ 1

4
− 1

48
=

11

48
← estimate

Using the Alternating Series Estimation Theorem (ASET), we can approximate the actual

sum with only the first two terms as
11

48
, with error at most the absolute value of the first

neglected term,
1

1440
. Here

1

1440
<

1

1000
as desired.

New Limits using Series

Example: Use series to evaluate the following limit

lim
x→0

x cosx

sinx
= lim

x→0

x

(
1− x2

2!
+
x4

4!
− x6

6!
+ . . .

)
x− x3

3!
+
x5

5!
− x7

7!
+ . . .

= lim
x→0

x

(
1− x2

2!
+
x4

4!
− x6

6!
+ . . .

)
x

(
1− x2

3!
+
x4

5!
− x6

7!
+ . . .

) = lim
x→0

1−
���

���
���

��: 0
x2

2!
+
x4

4!
− x6

6!
+ . . .

1−
��

���
���

���:
0

x2

3!
+
x4

5!
− x6

7!
+ . . .

= 1

In closing, there are many more subtopics to study for Power Series, but we have a great
base of material to build off of for now. Focus on the

• Definitions

• Domains

• Differentiation/Integration

• Derivation of Power Series for Functions, Multiple Methods

• Memorize the 6 Derived MacLaurin Series, study how each one was derived.

• Many Applications
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