

The remaining parts of Figure 19 show that as c becomes negative, the shapes change in reverse order. In fact, these curves are reflections about the horizontal ax_{is} of the corresponding curves with positive c.

Limaçons arise in the study of planetary motion. In particular, the trajectory of $M_{ar_{s_i}}$ as viewed from the planet Earth, has been modeled by a limaçon with a loop, as in the parts of Figure 19 with |c| > 1.

10.3 EXERCISES

FIGURE 19

Members of the family of limaçons $r = 1 + c \sin \theta$

1–2 Plot the point whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r > 0 and one with r < 0.

1. (a) $(1, \pi/4)$	(b) $(-2, 3\pi/2)$	(c) $(3, -\pi/3)$
2. (a) $(2, 5\pi/6)$	(b) $(1, -2\pi/3)$	(c) $(-1, 5\pi/4)$

3-4 Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

3. (a) (2, 3π/2)	(b) $(\sqrt{2}, \pi/4)$	(c) $(-1, -\pi/6)$
4. (a) $(4, 4\pi/3)$	(b) $(-2, 3\pi/4)$	(c) $(-3, -\pi/3)$

5-6 The Cartesian coordinates of a point are given.

- (i) Find polar coordinates (r, θ) of the point, where r > 0and $0 \le \theta < 2\pi$.
- (ii) Find polar coordinates (r, θ) of the point, where r < 0and $0 \le \theta < 2\pi$.
- **5.** (a) (-4, 4) (b) $(3, 3\sqrt{3})$
- **6.** (a) $(\sqrt{3}, -1)$ (b) (-6, 0)

7–12 Sketch the region in the plane consisting of points wh_{0Se} polar coordinates satisfy the given conditions.

7. $r \ge 1$ 8. $0 \le r < 2$, $\pi \le \theta \le 3\pi/2$ 9. $r \ge 0$, $\pi/4 \le \theta \le 3\pi/4$ 10. $1 \le r \le 3$, $\pi/6 < \theta < 5\pi/6$ 11. 2 < r < 3, $5\pi/3 \le \theta \le 7\pi/3$ 12. $r \ge 1$, $\pi \le \theta \le 2\pi$

- **13.** Find the distance between the points with polar coordinates $(4, 4\pi/3)$ and $(6, 5\pi/3)$.
- **14.** Find a formula for the distance between the points with polar coordinates (r_1, θ_1) and (r_2, θ_2) .

15–20 Identify the curve by finding a Cartesian equation for the curve.

15. $r^2 = 5$	16. $r = 4 \sec \theta$
17. $r = 5 \cos \theta$	18. $\theta = \pi/3$
19. $r^2 \cos 2\theta = 1$	20. $r^2 \sin 2\theta = 1$