

 $\int_1^n f(x) \, dx \leqslant a_1 + a_2 + \cdots + a_{n-1}$

(i) If $\int_{1}^{\infty} f(x) dx$ is convergent, then (4) gives

$$\sum_{i=2}^{n} a_i \leqslant \int_1^n f(x) \, dx \leqslant \int_1^\infty f(x) \, dx$$

since $f(x) \ge 0$. Therefore

5

$$s_n = a_1 + \sum_{i=2}^n a_i \le a_1 + \int_1^\infty f(x) \, dx = M$$
, say

Since $s_n \leq M$ for all *n*, the sequence $\{s_n\}$ is bounded above. Also

$$s_{n+1} = s_n + a_{n+1} \ge s_n$$

since $a_{n+1} = f(n + 1) \ge 0$. Thus $\{s_n\}$ is an increasing bounded sequence and so it is convergent by the Monotonic Sequence Theorem (11.1.12). This means that $\sum a_n$ is convergent.

(ii) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\int_{1}^{n} f(x) dx \to \infty$ as $n \to \infty$ because $f(x) \ge 0$. But (5) gives

$$\int_{1}^{n} f(x) \, dx \leq \sum_{i=1}^{n-1} a_{i} = s_{n-1}$$

and so $s_{n-1} \to \infty$. This implies that $s_n \to \infty$ and so $\sum a_n$ diverges.

11.3 EXERCISES

1. Draw a picture to show that

$$\sum_{n=2}^{\infty} \frac{1}{n^{1.3}} < \int_{1}^{\infty} \frac{1}{x^{1.3}} \, dx$$

What can you conclude about the series?

2. Suppose *f* is a continuous positive decreasing function for $x \ge 1$ and $a_n = f(n)$. By drawing a picture, rank the following three quantities in increasing order:

$$\int_{1}^{6} f(x) \, dx \qquad \sum_{i=1}^{5} a_i \qquad \sum_{i=2}^{6} a_i$$

3-8 Use the Integral Test to determine whether the series is convergent or divergent.

9–26 Determine whether the series is convergent or divergent. 9. $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{2}}$ **10.** $\sum n^{-0.9999}$ **11.** $1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \frac{1}{125} + \dots$ **12.** $\frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \dots$ **13.** $|\frac{1}{3} + \frac{1}{7} + \frac{1}{11} + \frac{1}{15} + \frac{1}{19} + \cdots$ **14.** $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \dots$ **15.** $\sum_{n=1}^{\infty} \frac{\sqrt{n}+4}{n^2}$ 16. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^{3/2}}$ 17. $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$ **18.** $\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n + 2}$ **19.** $\sum_{n=1}^{\infty} \frac{n^3}{n^4 + 4}$ **20.** $\sum_{n=3}^{\infty} \frac{3n-4}{n^2-2n}$ **21.** $\sum_{n=0}^{\infty} \frac{1}{n \ln n}$ 22. $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$ **23.** $\sum_{k=1}^{\infty} ke^{-k}$ 24. $\sum_{k=1}^{\infty} k e^{-k^2}$ **25.** $\sum_{n=1}^{\infty} \frac{1}{n^2 + n^3}$ **26.** $\sum_{n=1}^{\infty} \frac{n}{n^4 + 1}$

27–28 Explain why the Integral Test can't be used to determine whether the series is convergent.

27.
$$\sum_{n=1}^{\infty} \frac{\cos \pi n}{\sqrt{n}}$$
 28. $\sum_{n=1}^{\infty} \frac{\cos^2 n}{1+n^2}$

29–32 Find the values of p for which the series is convergent.

29.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$$

30. $\sum_{n=3}^{\infty} \frac{1}{n \ln n [\ln(\ln n)]^p}$
31. $\sum_{n=1}^{\infty} n(1 + n^2)^p$
32. $\sum_{n=1}^{\infty} \frac{\ln n}{n^p}$

33. The Riemann zeta-function ζ is defined by

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

and is used in number theory to study the distribution of prime numbers. What is the domain of ζ ?

34. Leonhard Euler was able to calculate the exact sum of the *p*-series with p = 2:

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

(See page 760.) Use this fact to find the sum of each series

(a) $\sum_{n=2}^{\infty} \frac{1}{n^2}$ (b) $\sum_{n=3}^{\infty} \frac{1}{(n+1)^2}$ (c) $\sum_{n=1}^{\infty} \frac{1}{(2n)^2}$

35. Euler also found the sum of the *p*-series with p = 4:

$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

Use Euler's result to find the sum of the series,

(a)
$$\sum_{n=1}^{\infty} \left(\frac{3}{n}\right)^4$$
 (b) $\sum_{k=5}^{\infty} \frac{1}{(k-2)^4}$

- 36. (a) Find the partial sum s₁₀ of the series ∑_{n=1}[∞] 1/n⁴. Estimate the error in using s₁₀ as an approximation to the sum of the series.
 - (b) Use (3) with n = 10 to give an improved estimate of the sum.
 - (c) Compare your estimate in part (b) with the exact value given in Exercise 35.
 - (d) Find a value of n so that s_n is within 0.00001 of the sum.
- **37.** (a) Use the sum of the first 10 terms to estimate the sum of the series $\sum_{n=1}^{\infty} 1/n^2$. How good is this estimate?
 - (b) Improve this estimate using (3) with n = 10.
 - (c) Compare your estimate in part (b) with the exact value given in Exercise 34.
 - (d) Find a value of *n* that will ensure that the error in the approximation $s \approx s_n$ is less than 0.001.
- **38.** Find the sum of the series $\sum_{n=1}^{\infty} ne^{-2n}$ correct to four decimal places.
- **39.** Estimate $\sum_{n=1}^{\infty} (2n + 1)^{-6}$ correct to five decimal places.
- **40.** How many terms of the series $\sum_{n=2}^{\infty} 1/[n(\ln n)^2]$ would you need to add to find its sum to within 0.01?
- **41.** Show that if we want to approximate the sum of the series $\sum_{n=1}^{\infty} n^{-1.001}$ so that the error is less than 5 in the ninth decimal place, then we need to add more than $10^{11.301}$ terms!
- (a) Show that the series $\sum_{n=1}^{\infty} (\ln n)^2/n^2$ is convergent.
 - (b) Find an upper bound for the error in the approximation $s \approx s_n$.
 - (c) What is the smallest value of *n* such that this upper bound is less than 0.05?
 - (d) Find s_n for this value of n.

calculator or a computer, we find that

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 1} \approx \sum_{n=1}^{100} \frac{1}{n^3 + 1} \approx 0.6864538$$

with error less than 0.00005.

11.4 EXERCISES

- 1. Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is known to be convergent.
 - (a) If $a_n > b_n$ for all n, what can you say about $\sum a_n$? Why?
 - (a) If $a_n < b_n$ for all *n*, what can you say about $\sum a_n$? Why?
- 2. Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is known to be divergent.
 - (a) If $a_n > b_n$ for all *n*, what can you say about $\sum a_n$? Why?
 - (b) If $a_n < b_n$ for all *n*, what can you say about $\sum a_n$? Why?

3-32 Determine whether the series converges or diverges.

3.
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 8}$$
4.
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} - 1}$$
5.
$$\sum_{n=1}^{\infty} \frac{n + 1}{n\sqrt{n}}$$
6.
$$\sum_{n=1}^{\infty} \frac{n - 1}{n^3 + 1}$$
7.
$$\sum_{n=1}^{\infty} \frac{9^n}{3 + 10^n}$$
8.
$$\sum_{n=1}^{\infty} \frac{6^n}{5^n - 1}$$
9.
$$\sum_{k=1}^{\infty} \frac{\ln k}{k}$$
10.
$$\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1 + k^3}$$
11.
$$\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}}$$
12.
$$\sum_{k=1}^{\infty} \frac{(2k - 1)(k^2 - 1)}{(k + 1)(k^2 + 4)^2}$$
13.
$$\sum_{n=1}^{\infty} \frac{1 + \cos n}{e^n}$$
14.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3n^4 + 1}}$$
15.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n - 2}$$
16.
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
17.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$$
18.
$$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n} + 2}$$
19.
$$\sum_{n=1}^{\infty} \frac{n + 1}{n^3 + n}$$
20.
$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{n^4 + n^2}$$

21.
$$\sum_{n=1}^{\infty} \frac{\sqrt{1+n}}{2+n}$$

22. $\sum_{n=1}^{\infty}$
23. $\sum_{n=1}^{\infty} \frac{5+2n}{(1+n^2)^2}$
24. $\sum_{n=1}^{\infty}$
25. $\sum_{n=1}^{\infty} \frac{e^n+1}{ne^n+1}$
26. $\sum_{n=1}^{\infty}$
27. $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^2 e^{-n}$
28. $\sum_{n=1}^{\infty}$
29. $\sum_{n=1}^{\infty} \frac{1}{n!}$
30. $\sum_{n=1}^{\infty}$
31. $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$
32. $\sum_{n=1}^{\infty}$

33–36 Use the sum of the first 10 terms to the series. Estimate the error.

33.
$$\sum_{n=1}^{\infty} \frac{1}{5+n^5}$$
 34.

35.
$$\sum_{n=1}^{\infty} 5^{-n} \cos^2 n$$
 36.

37. The meaning of the decimal represent $0.d_1d_2d_3...$ (where the digit d_i is one 2, ..., 9) is that

$$0.d_1d_2d_3d_4\ldots = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10}$$

Show that this series always converge