

 $\int_1^n f(x) dx \leq a_1 + a_2 + \cdots + a_{n-1}$

 $f^{(1)}$ If $\int_1^1 f(x) dx$ is convergent, then (4) gives

$$
\sum_{i=2}^{n} a_i \le \int_1^n f(x) \, dx \le \int_1^\infty f(x) \, dx
$$

 $\sqrt{5}$

$$
s_n = a_1 + \sum_{i=2}^n a_i \le a_1 + \int_1^\infty f(x) \, dx = M, \text{ say}
$$

Since $s_n \leq M$ for all *n*, the sequence $\{s_n\}$ is bounded above. Also

$$
s_{n+1}=s_n+a_{n+1}\geq s_n
$$

since $a_{n+1} = f(n + 1) \ge 0$. Thus $\{s_n\}$ is an increasing bounded sequence and so it is convergent by the Monotonic Sequence Theorem (11.1.12). This means that $\sum a_n$ is convergent

(ii) If $\int_1^{\infty} f(x) dx$ is divergent, then $\int_1^n f(x) dx \to \infty$ as $n \to \infty$ because $f(x) \ge 0$. But (5) gives

$$
\int_1^n f(x) \ dx \leqslant \sum_{i=1}^{n-1} a_i = s_{n-1}
$$

and so $s_{n-1} \rightarrow \infty$. This implies that $s_n \rightarrow \infty$ and so $\sum a_n$ diverges

11.3 EXERCISES

$$
\sum_{n=2}^{\infty} \frac{1}{n^{1.3}} < \int_{1}^{\infty} \frac{1}{x^{1.3}} \, dx
$$

2. Suppose f is a continuous positive decreasing function for three quantities in increasing order:

$$
\int_{1}^{6} f(x) \, dx \qquad \sum_{i=1}^{5} a_i \qquad \sum_{i=2}^{6} a_i
$$

1. Draw a picture to show that 3-8 Use the Integral Test to determine whether the series is convergent or divergent.

9-26 Determine whether the series is convergent or divergent. **9.** $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2}}}$ 10. $\sum n^{-0.9999}$] ¹ n=1 11. 1 + + $\frac{8}{27}$ 64 125 **12.** $\frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \cdots$ (a) $\sum_{n=2}^{\infty} \frac{1}{n^2}$ (b) **13.** $\frac{1}{3} + \frac{1}{7} + \frac{1}{11} + \frac{1}{15} + \frac{1}{19} + \cdots$ (c) $\sum_{n=1}^{\infty} \frac{1}{(2n)}$ **14.** $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \cdots$
 51. Euler also found the sum of the p-series with $p = 4$ **15.** $\sum_{n=1}^{\infty} \frac{\sqrt{n-1} + 4}{n^2}$ **16.** $\sum_{n=1}^{\infty} \frac{\sqrt{n-1}}{1 + n^{3/2}}$ **16.** It is Euler's possible find the sum of the sum 17. $\frac{2}{n^2+4}$ 18. $\sum \frac{n+1}{n^2+2n+2}$ (a) $\sum \left(\frac{3}{n}\right)$ (b) n· 19. $\sum_{n=1}^{\infty} \frac{3n-4}{n^4+4}$ 20. $\sum_{n=1}^{\infty} \frac{3n-4}{n^2}$ 21. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ **22.** $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ 23. $\sum_{k=1}^{\infty} k e^{-k}$ 24. $\sum_{k=1}^{\infty} k e^{-k^2}$ (c) Compare your estimate in part (b) with the exact value **24.** $\sum_{k=1}^{\infty} ke^{-k^2}$ \approx $\frac{1}{2}$ Find a value of n so that s_n is within 0.00001 of the sum 26. $\sum_{n=1}^{\infty} \frac{n}{n^4+1}$ $25. \sum_{n=2}^{\infty} \frac{n}{n^3}$ 26. $\sum_{n=1}^{\infty} \frac{n}{n^2}$

27-28 Explain why the Integral Test can't be used to determine (c) Compare your estimate whether the series is convergent. whether the series is convergent.

27.
$$
\sum_{n=1}^{\infty} \frac{\cos \pi n}{\sqrt{n}}
$$

28.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

28.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

29.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

20.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

21.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

22.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

23.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

24.
$$
\sum_{n=1}^{\infty} \frac{\cos^2 n}{1 + n^2}
$$

29-32 Find the values of p for which the series is convergent.

29.
$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}
$$

\n**30.**
$$
\sum_{n=3}^{\infty} \frac{1}{n \ln n [\ln(\ln n)]^p}
$$

\n**31.**
$$
\sum_{n=1}^{\infty} \hat{n}(1 + \hat{n}^2)^{\frac{1}{p}}
$$

\n**32.**
$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^p}
$$

33. The Riemann zeta-function ζ is defined by

$$
\zeta(x)=\sum_{n=1}^\infty\frac{1}{n^x}
$$

prime numbers. What is the domain of ζ ?

34. Leonhard Euler was able to calculate the exact sum of the *p*-series with $p = 2$:

$$
\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
$$

(See page 760.) Use this fact to find the sum of each series

(a)
$$
\sum_{n=2}^{\infty} \frac{1}{n^2}
$$

\n(b) $\sum_{n=3}^{\infty} \frac{1}{(n+1)^2}$
\n(c) $\sum_{n=1}^{\infty} \frac{1}{(2n)^2}$

$$
\zeta(4)=\sum_{n=1}^{\infty}\frac{1}{n^4}=\frac{\pi^4}{90}
$$

Use Euler's result to find the sum of the series.

(a)
$$
\sum_{n=1}^{\infty} \frac{1}{n^2 + 2n + 2}
$$
 (a) $\sum_{n=1}^{\infty} \left(\frac{3}{n}\right)^4$ (b) $\sum_{k=5}^{\infty} \frac{1}{(k-2)^4}$

- $\overline{n-1}$ $n^4 + 4$ **20.** $\sum_{n=3}^{\infty} \overline{n^2 2n}$ **36.** (a) Find the partial sum s_{10} of the series $\sum_{n=1}^{\infty} 1/n^4$. Estimately mate the error in using s_{10} as an approximation to the sum of the series.
	- (b) Use (3) with $n = 10$ to give an improved estimate of the sum
	- given in Exercise 35.
	-
	- 37. (a) Use the sum of the first 10 terms to estimate the sum of the series $\sum_{n=1}^{\infty} 1/n^2$. How good is this estimate
		-
		- (b) Improve this estimate using (3) with $n = 10$.
(c) Compare your estimate in part (b) with the exact value
		- (d) Find a value of n that will ensure that the error in the
	- $\sum_{n=1}^{\infty} ne^{-2n}$ correct to four decimal places
	- **39.** Estimate $\sum_{n=1}^{\infty} (2n + 1)^{-6}$ correct to five decimal places
	- $\sum_{n=2}^{\infty} 1/[(n(\ln n)^2)]$ would you need to add to find its sum to within 0.01 ?
	- 41. Show that if we want to approximate the sum of the series $\sum_{n=1}^{\infty} n^{-1.001}$ so that the error is less than 5 in the ninth decimal place, then we need to add more than $10^{11,301}$ terms!
	- Show that the series $\sum_{n=1}^{\infty} (\ln n)^2/n^2$ is convergent
		- (b) Find an upper bound for the error in the approximation $s \approx s_n$
- and is used in number theory to study the distribution of $\frac{c}{b}$ (c) What is the smallest value of *n* such that this upper bound is less than 0.05?
	- (d) Find s_n for this value of *n*.

calculator or a computer, we find that

$$
\sum_{n=1}^{\infty} \frac{1}{n^3 + 1} \approx \sum_{n=1}^{100} \frac{1}{n^3 + 1} \approx 0.6864538
$$

with error user than 1990

11.4 EXERCISES

- Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is known to be convergent.
	- 2.5 m^2 (a) If $a_n > b_n$ for an *n*, what can you say about $\ge a_n$? Why? $n=1$ $2 + n$
	- (b) If $a_n < b_n$ for all n, what can you say about $\sum a_n$? Why?
- 2. Suppose Σa_n and Σb_n are series with positive terms and Σb_n **23.** $\Sigma \frac{\partial^2 \Sigma^2}{\partial \nu^2}$ is known to be divergent.

(a) If $a_n > b_n$ for all *n*, what can you say about $\sum a_n$? Why?
	- (a) If $a_n \geq b_n$ for all n, what can you say about $\geq a_n$. Why?
	- (b) If $a_n < b_n$ for all *n*, what can you say about $\sum a_n$? Why? 25. $\sum_{n=1}^{\infty} \frac{a_n}{n e^n + 1}$ 26. \sum

3-32 Determine whether the series converges or diverges.

3.
$$
\sum_{n=1}^{\infty} \frac{n+1}{n^3+8}
$$

\n4. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$
\n5. $\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$
\n6. $\sum_{n=1}^{\infty} \frac{n-1}{n^3+1}$
\n7. $\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$
\n8. $\sum_{n=1}^{\infty} \frac{6^n}{5^n-1}$
\n9. $\sum_{k=1}^{\infty} \frac{\ln k}{k}$
\n10. $\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1+k^3}$
\n11. $\sum_{k=1}^{\infty} \frac{\sqrt{k}}{\sqrt{k^3+4k+3}}$
\n12. $\sum_{k=1}^{\infty} \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$
\n13. $\sum_{n=1}^{\infty} \frac{1+\cos n}{3^n-2}$
\n14. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3n^4+1}}$
\n15. $\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n-2}$
\n16. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$
\n17. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$
\n18. $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n+2}}$
\n19. $\sum_{n=1}^{\infty} \frac{n+1}{n^3+n}$
\n10. $\sum_{n=1}^{\infty} \frac{k \sin^2 k}{\sqrt{3n^4+1}}$
\n11. $\sum_{n=1}^{\infty} \frac{1}{3^n-2}$
\n12. $\sum_{k=1}^{\infty} \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$
\n13. $\sum_{n=1}^{\infty} 5^{-n} \cos^2 n$
\n14. $\sum_{n=1}^{\infty} \frac$

you say about
$$
\sum a_n
$$
? Why?
\n21. $\sum_{n=1}^{\infty} \frac{\sqrt{1+n}}{2+n}$
\n22. $\sum_{n=1}^{\infty}$
\n23. $\sum_{n=1}^{\infty} \frac{5+2n}{(1+n^2)^2}$
\n24. $\sum_{n=1}^{\infty}$
\n25. $\sum_{n=1}^{\infty} \frac{e^n + 1}{ne^n + 1}$
\n26. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n-1}}$
\n27. $\sum_{n=1}^{\infty} \frac{e^n + 1}{ne^n + 1}$
\n28. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$
\n30. $\sum_{n=1}^{\infty} \frac{n-1}{n^3 + 1}$
\n31. $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$
\n32. $\sum_{n=1}^{\infty} \frac{1}{n!}$
\n33. $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$
\n34. $\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$
\n35. $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$
\n37. $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$
\n38. $\sum_{n=1}^{\infty} \frac{1}{n}$
\n39. $\sum_{n=1}^{\infty} \frac{1}{n}$
\n30. $\sum_{n=1}^{\infty} \frac{1}{n}$
\n31. $\sum_{n=1}^{\infty} \sin(\frac{1}{n})$
\n32. $\sum_{n=1}^{\infty} \frac{1}{n}$

33-36 Use the sum of the first 10 terms to the series. Estimate the error.

33.
$$
\sum_{n=1}^{\infty} \frac{1}{5 + n^5}
$$
 34.

14.
$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3n^4 + 1}}
$$
 35.
$$
\sum_{n=1}^{\infty} 5^{-n} \cos^2 n
$$
 36.

37. The meaning of the decimal represent $0.d_1d_2d_3...$ (where the digit d_i is one $2, \ldots, 9$ is that

$$
(n + 2)
$$

0. $d_1d_2d_3d_4...$

$$
= \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10^3}
$$

 $\frac{1}{n^2}$ Show that this series always converge