

11.2 EXERCISES

- 1. (a) What is the difference between a sequence and a series?(b) What is a convergent series? What is a divergent series?
- **2.** Explain what it means to say that $\sum_{n=1}^{\infty} a_n = 5$.

3-4 Calculate the sum of the series $\sum_{n=1}^{\infty} a_n$ whose partial sums are given.

3.
$$s_n = 2 - 3(0.8)^n$$
 4. $s_n = \frac{n^2 - 1}{4n^2 + 1}$

5-8 Calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?

5.
$$\sum_{n=1}^{\infty} \frac{1}{n^4 + n^2}$$
 6. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$

7. $\sum_{n=1}^{\infty} \sin n$

9-14 Find at least 10 part sequence of terms and the screen. Does it appear tha If it is convergent, find th

9.
$$\sum_{n=1}^{\infty} \frac{12}{(-5)^n}$$

11. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+4}}$

13.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
 14. $\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} - \sin \frac{1}{n+1} \right)$ **39.**

- **15.** Let $a_n = \frac{2n}{3n+1}$.
 - (a) Determine whether $\{a_n\}$ is convergent.
 - (b) Determine whether $\sum_{n=1}^{\infty} a_n$ is convergent.
- **16.** (a) Explain the difference between

$$\sum_{i=1}^{n} a_i \quad \text{and} \quad \sum_{j=1}^{n} a_j$$

(b) Explain the difference between

$$\sum_{i=1}^{n} a_i$$
 and $\sum_{i=1}^{n} a_i$

17-26 Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.

17. $3 - 4 + \frac{16}{3} - \frac{64}{9} + \cdots$ **18.** $4 + 3 + \frac{9}{4} + \frac{27}{16} + \cdots$ **19.** $10 - 2 + 0.4 - 0.08 + \cdots$ **20.** $2 + 0.5 + 0.125 + 0.03125 + \cdots$ **21.** $\sum_{n=1}^{\infty} 12(0.73)^{n-1}$ **22.** $\sum_{n=1}^{\infty} \frac{5}{\pi^n}$ **23.** $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$ **24.** $\sum_{n=0}^{\infty} \frac{3^{n+1}}{(-2)^n}$

25.
$$\sum_{n=1}^{\infty} \frac{e^{2n}}{6^{n-1}}$$
 26. $\sum_{n=1}^{\infty} \frac{6 \cdot 2^{2n-1}}{3^n}$

27–42 Determine whether the series is convergent or divergent. If it is convergent, find its sum.

39.
$$\sum_{n=1}^{\infty} \arctan n$$

40. $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right)$
41. $\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)}\right)$
42. $\sum_{n=1}^{\infty} \frac{e^n}{n^2}$

43–48 Determine whether the series is convergent or divergent by expressing s_n as a telescoping sum (as in Example 8). If it is convergent, find its sum.

43.
$$\sum_{n=2}^{\infty} \frac{2}{n^2 - 1}$$

44. $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$
45. $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$
46. $\sum_{n=4}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$
47. $\sum_{n=1}^{\infty} \left(e^{1/n} - e^{1/(n+1)}\right)$
48. $\sum_{n=2}^{\infty} \frac{1}{n^3 - n}$

49. Let $x = 0.99999 \dots$

- (a) Do you think that x < 1 or x = 1?
- (b) Sum a geometric series to find the value of x.
- (c) How many decimal representations does the number 1 have?
- (d) Which numbers have more than one decimal representation?

50. A sequence of terms is defined by

$$a_1 = 1$$
 $a_n = (5 - n)a_{n-1}$
Calculate $\sum_{n=1}^{\infty} a_n$.

51-56 Express the number as a ratio of integers.

55. 1.234 5 67	56. 5.71358
54. $10.1\overline{35} = 10.135353535$	
53. $2.\overline{516} = 2.516516516$	
51. $0.\overline{8} = 0.8888 \dots$	52. $0.\overline{46} = 0.46464646$

57–63 Find the values of x for which the series converges. Find the sum of the series for those values of x.

57.
$$\sum_{n=1}^{\infty} (-5)^n x^n$$

58. $\sum_{n=1}^{\infty} (x+2)^n$
59. $\sum_{n=0}^{\infty} \frac{(x-2)^n}{3^n}$
60. $\sum_{n=0}^{\infty} (-4)^n (x-5)^n$
61. $\sum_{n=0}^{\infty} \frac{2^n}{x^n}$
62. $\sum_{n=0}^{\infty} \frac{\sin^n x}{3^n}$
63. $\sum_{n=0}^{\infty} e^{nx}$

756