CHAPTER 11 Infinite Sequences and Series

11.1 **EXERCISES**

- **1.** (a) What is a sequence?
 - (b) What does it mean to say that $\lim_{n\to\infty} a_n = 8$?
 - (c) What does it mean to say that $\lim_{n\to\infty} a_n = \infty$?
- 2. (a) What is a convergent sequence? Give two examples. (b) What is a divergent sequence? Give two examples.

3-12 List the first five terms of the sequence.

3. $a_n = \frac{2^n}{2n+1}$ **4.** $a_n = \frac{n^2 - 1}{n^2 + 1}$ **5.** $a_n = \frac{(-1)^{n-1}}{5^n}$ 6. $a_n = \cos \frac{n\pi}{2}$ 7. $a_n = \frac{1}{(n+1)!}$ 8. $a_n = \frac{(-1)^n n}{n! + 1}$

9.
$$a_1 = 1$$
, $a_{n+1} = 5a_n - 3$

10. $a_1 = 6$, $a_{n+1} = \frac{a_n}{n}$ **11.** $a_1 = 2$, $a_{n+1} = \frac{a_n}{1 + a_n}$

12.
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+1} = a_n - a_{n-1}$

13–18 Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

13. $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \dots\right\}$ **14.** $\left\{4, -1, \frac{1}{4}, -\frac{1}{16}, \frac{1}{64}, \ldots\right\}$ **15.** $\left\{-3, 2, -\frac{4}{3}, \frac{8}{9}, -\frac{16}{27}, \ldots\right\}$ **16.** {5, 8, 11, 14, 17, . . .} **17.** $\left\{\frac{1}{2}, -\frac{4}{3}, \frac{9}{4}, -\frac{16}{5}, \frac{25}{6}, \ldots\right\}$ **18.** {1, 0, -1, 0, 1, 0, -1, 0, ...}

19–22 Calculate, to four decimal places, the first ten terms of the sequence and use them to plot the graph of the sequence by hand. Does the sequence appear to have a limit? If so, calculate it. If not, explain why.

20. $a_n = 2 + \frac{(-1)^n}{n}$ **19.** $a_n = \frac{3n}{1+6n}$ **22.** $a_n = 1 + \frac{10^n}{9^n}$ **21.** $a_n = 1 + \left(-\frac{1}{2}\right)^n$

23-56 Determine whether the sequence converges or diverges. If it converges, find the limit.

23.
$$a_n = \frac{3+5n^2}{n+n^2}$$

24. $a_n = \frac{3+5n^2}{1+n}$
25. $a_n = \frac{n^4}{n^3 - 2n}$
26. $a_n = 2 + (0.86)^n$
27. $a_n = 3^n 7^{-n}$
28. $a_n = 2 + (0.86)^n$
27. $a_n = 3^n 7^{-n}$
28. $a_n = \frac{3\sqrt{n}}{\sqrt{n+2}}$
29. $a_n = e^{-1/\sqrt{n}}$
30. $a_n = \frac{4^n}{1+9^n}$
31. $a_n = \sqrt{\frac{1+4n^2}{1+n^2}}$
32. $a_n = \cos\left(\frac{n\pi}{n+1}\right)$
33. $a_n = \frac{n^2}{\sqrt{n^3+4n}}$
34. $a_n = e^{2n/(n+2)}$
35. $a_n = \frac{(-1)^n}{2\sqrt{n}}$
36. $a_n = \frac{(-1)^{n+1}n}{n+\sqrt{n}}$
37. $\left\{\frac{(2n-1)!}{(2n+1)!}\right\}$
38. $\left\{\frac{\ln n}{\ln 2n}\right\}$
39. $\{\sin n\}$
40. $a_n = \frac{\tan^{-1}n}{n}$
41. $\{n^2e^{-n}\}$
42. $a_n = \ln(n+1) - \ln n$
43. $a_n = \frac{\cos^2 n}{2^n}$
44. $a_n = \sqrt[n]{2^{1+3n}}$
45. $a_n = n \sin(1/n)$
46. $a_n = 2^{-n} \cos n\pi$
47. $a_n = \left(1 + \frac{2}{n}\right)^n$
48. $a_n = \sqrt[n]{n}$
49. $a_n = \ln(2n^2 + 1) - \ln(n^2 + 1)$

4

50. $a_n = \frac{(\ln n)^2}{n}$

51. $a_n = \arctan(\ln n)$

52. $a_n = n - \sqrt{n+1}\sqrt{n+3}$

53. {0, 1, 0, 0, 1, 0, 0, 0, 1, . . . }

54. $\left\{\frac{1}{1}, \frac{1}{3}, \frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{5}, \frac{1}{4}, \frac{1}{6}, \dots\right\}$

744

56.
$$a_n = \frac{(-3)^n}{n!}$$

o decide whether the If the sequence is conver-1 the graph and then prove page 739 for advice on

$$a_n = \frac{\sin n}{n}$$

0.
$$a_n = \sqrt[n]{3^n + 5^n}$$

ce defined as follows is

1. A. 1965 (MAR * 1973) 1. A. 1965 (MAR * 1973) 1. A. 1975 (MAR * 1975)

for $n \ge 1$

 $s a_1 = 2?$

compounded annually, worth $a_n = 1000(1.06)^n$

.quence $\{a_n\}$. vergent? Explain.

ry month into an ar compounded mulated after *n* months

$$-n$$

uence.

68. Find the first 40 terms of the sequence defined by

 $a_{n+1} = \begin{cases} \frac{1}{2}a_n & \text{if } a_n \text{ is an even number} \\ 3a_n + 1 & \text{if } a_n \text{ is an odd number} \end{cases}$

and $a_1 = 11$. Do the same if $a_1 = 25$. Make a conjecture about this type of sequence.

69. For what values of r is the sequence $\{nr^n\}$ convergent?

70. (a) If $\{a_n\}$ is convergent, show that

$$\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n$$

- (b) A sequence $\{a_n\}$ is defined by $a_1 = 1$ and $a_{n+1} = 1/(1 + a_n)$ for $n \ge 1$. Assuming that $\{a_n\}$ is convergent, find its limit.
- 71. Suppose you know that $\{a_n\}$ is a decreasing sequence and all its terms lie between the numbers 5 and 8. Explain why the sequence has a limit. What can you say about the value of the limit?

72–78 Determine whether the sequence is increasing, decreasing, or not monotonic. Is the sequence bounded?

72. $a_n = \cos n$
73. $a_n = \frac{1}{2n+3}$
74. $a_n = \frac{1-n}{2+n}$
75. $a_n = n(-1)^n$
76. $a_n = 2 + \frac{(-1)^n}{n}$
77. $a_n = 3 - 2ne^{-n}$
78. $a_n = n^3 - 3n + 3$

79. Find the limit of the sequence

$$\left\{\sqrt{2},\sqrt{2\sqrt{2}},\sqrt{2\sqrt{2\sqrt{2}}},\ldots\right\}$$

80. A sequence {a_n} is given by a₁ = √2, a_{n+1} = √2 + a_n.
(a) By induction or otherwise, show that {a_n} is increasing

(a) By induction of other wise, show that (a_n) and bounded above by 3. Apply the Monotonic Sequence Theorem to show that $\lim_{n\to\infty} a_n$ exists.

(b) Find $\lim_{n\to\infty} a_n$.

81. Show that the sequence defined by

$$a_1 = 1$$
 $a_{n+1} = 3 - \frac{1}{a_n}$