Math 121 Midterm Exam #3 April 26-28, 2020

- You may only access your class notes. No books, calculators, cell phones, people, or webpages.
- Numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $\ln(e^7)$, $e^{3\ln 3}$, $\arctan\sqrt{3}$ or $\cosh(\ln 3)$ should be simplified.
- Please *show* all of your work and *justify* all of your answers.
- You may work for no more than 24 consecutive hours.
- When done, immediately upload to the EXAM 3 entry in Gradescope. TAG problems.

1. [22 Points] Find the **Interval** and **Radius** of Convergence for the following power series. Analyze carefully and with full justification.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (5x+1)^n}{(n+1) 9^n}$$
 (b) $\sum_{n=1}^{\infty} n^n (x-3)^n$ (c) $\sum_{n=1}^{\infty} \frac{x^{2n+1}}{n!}$

2. [20 Points] Your answers should all be in sigma notation $\sum_{n=0}^{\infty}$ here.

- (a) Write the MacLaurin Series for $f(x) = \frac{x^4}{1+7x}$. State the Radius of Convergence.
- (b) Write the MacLaurin Series for $f(x) = x^3 \sin(x^2)$. State the Radius of Convergence.
- (c) Use your Series in part (b) to compute $\int x^3 \sin(x^2) dx$.
- (d) Write the MacLaurin Series for $f(x) = x^2 \ln(1+5x)$. State the Radius of Convergence.

(e) Use your Series in part (d) to compute $\frac{d}{dx} \left[x^2 \ln(1+5x) \right]$.

- **3.** [10 Points] Justify all details.
- (a) **Estimate** $\frac{1}{\sqrt{e}}$ with error less than $\frac{1}{200}$.

(b) **Estimate** $\sin(1)$ with error less than $\frac{1}{1000}$. Tip: 7! = 5040.

4. [22 Points] Find the sum for each of the following series (which do converge). Simplify.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n+1)!}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-1)^n (\ln 9)^n}{2^n n!}$ (c) $2 - \frac{2}{2} + \frac{2}{3} - \frac{2}{4} + \frac{2}{5} - \dots$

(d)
$$-\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$
 (e) $\sum_{n=0}^{\infty} \frac{1}{e^n}$ (f) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2n}}{2^{4n} (2n)!}$

5. [16 Points] Do not just write a formula. You do **not** need to state the Radius. Your answers should all be in Sigma notation $\sum_{n=0}^{\infty}$ here.

(a) Demonstrate one method to compute the MacLaurin Series for $F(x) = \ln(1+x)$.

- (b) Demonstrate a second, different, method to compute the MacLaurin Series for $F(x) = \ln(1+x)$.
- (c) Demonstrate one method to compute the MacLaurin Series for $G(x) = \sinh x$.
- (d) Demonstrate a second, different, method to compute the MacLaurin Series for $G(x) = \sinh x$.

6. [10 Points] Consider the Parametric Curve given by $x = \frac{e^{2t}}{2} - \frac{t^3}{3}$ and $y = 2te^t - 2e^t$.

- (a) Compute the derivative $\frac{dy}{dx}$ for the curve when t = 1.
- (b) Compute the Arclength of this parametric curve for $0 \le t \le 1$.

OPTIONAL BONUS #1 Demonstrate a third, **different**, method than in Problem 5 above, to compute the MacLaurin Series for $F(x) = \ln(1+x)$.