

Homework #3Due **Friday, September 12th** in Gradescope by 11:59 pm**Goal:** Solidifying Calculus for Inverse Sine and Inverse Tangent.**FIRST:** Read through and understand the following two Derivative proofs.Ex: **PROVE** that $\frac{d}{dx} \arctan x = \frac{1}{1+x^2}$ Proof: Let $y = \arctan x$ Looking to solve for $\frac{dy}{dx}$ Invert $\tan y = x$ Differentiate $\frac{d}{dx} (\tan y) = \frac{d}{dx} (x)$

$$\sec^2 y \cdot \frac{dy}{dx} = 1$$

Solve $\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + (\tan y)^2} = \frac{1}{1 + x^2}$ Ex: **PROVE** that $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1-x^2}}$ Proof: Let $y = \arcsin x$ Looking to solve for $\frac{dy}{dx}$ Invert $\sin y = x$ Differentiate $\frac{d}{dx} (\sin y) = \frac{d}{dx} (x)$

$$\cos y \cdot \frac{dy}{dx} = 1$$

Solve $\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - (\sin y)^2}} = \frac{1}{\sqrt{1 - x^2}}$

Continue to NEXT Page for HW problems.

Differentiate the following functions for 1-4. Simplify.

$$1. \ f(x) = \tan^{-1}(x^2) \quad 2. \ f(x) = (\tan^{-1}(x))^2$$

$$3. \ y = x \sin^{-1} x + \sqrt{1 - x^2} \quad 4. \ f(x) = \ln \left(1 - \arcsin \left(\frac{2}{x^4} \right) \right)$$

$$5. \text{ Find the value of the expression } \tan \left(\sin^{-1} \left(\frac{2}{3} \right) \right)$$

$$6. \text{ Simplify the expression } \sin(\tan^{-1} x)$$

$$7. \text{ Compute the Second Derivative for } f(x) = \arctan(2x)$$

$$8. \text{ Compute the Second Derivative for } f(x) = \arcsin(6x)$$

$$9. \text{ Prove that } \frac{d}{dx} \sin^{-1}(3x) = \frac{3}{\sqrt{1 - 9x^2}}$$

$$10. \text{ Prove that } \frac{d}{dx} \tan^{-1}(5x) = \frac{5}{1 + 25x^2}$$

$$11. \text{ Use Integration to Justify that } \int \frac{1}{3 + x^2} dx = \frac{1}{\sqrt{3}} \arctan \left(\frac{x}{\sqrt{3}} \right) + C$$

Compute each of the following Integrals. Simplify.

$$12. \int \frac{x^2}{x^2 + 1} dx$$

$$13. \int \frac{x + 1}{x^2 + 1} dx$$

$$14. \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{8}{1 + x^2} dx$$

$$15. \int_0^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1 - x^2}} dx$$

$$16. \int \frac{1}{\sqrt{1 - x^2} \cdot \sin^{-1} x} dx$$

$$17. \int_1^3 \frac{1}{\sqrt{x} (1 + x)} dx$$

$$18. \int_0^{\ln 3} \frac{e^x}{1 + e^x} dx$$

$$19. \int_0^{\frac{1}{2} \ln 3} \frac{e^x}{1 + e^{2x}} dx$$

$$20. \int \frac{e^{2x}}{\sqrt{1 - e^{4x}}} dx$$

$$21. \int_3^{3\sqrt{3}} \frac{1}{\sqrt{36 - x^2}} + \frac{1}{9 + x^2} dx$$

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

6–9:00pm TAs Emma/Myles, SMUDD 204

Tuesday: 1:00–4:00 pm

5:30–7:00 pm TA Julia, SMUDD 204

7:30-9:00 pm TA Emma, SMUDD 204

Wednesday: 1:00–3:00 pm

6–10:30 pm TAs Julia/Myles/Natalie, SMUDD 204

Thursday: 10–11:30 am

7:30–10:30 pm TAs Natalie/DJ, SMUDD 204

Friday: 12:00–2:00 pm

7:30–9:00 pm TA DJ, SMUDD 204

- Please do not wait until the last night to start.
- Please stop by for help! Please try the homework before you come by though. Final Answer keys are posted on the webpage. Please do **not** look at them unless you have completed the problems. **They are not a replacement for my help or your understanding.**
- You can also find help at the Math Fellow sessions or the QCenter hours with Tim St. Onge