

Homework #2

Due Wednesday, September 10th in Gradescope by 11:59 pm

Goal: Review of Limits, Derivatives and Integrals for Exponentials and Logarithms. Plenty of help in Office Hours!

FIRST: Read through and understand the following Examples.

Think about the graph of $y = \ln x$. We know that $\lim_{x \rightarrow 0^+} \ln x = \lim_{x \rightarrow 0^+} \ln x \xrightarrow{0^+} -\infty$. Learn this!

Warning: Do **not** write $\ln 0$; it is undefined.

Ex: $\lim_{x \rightarrow 5^+} \ln(x-5) = \lim_{x \rightarrow 5^+} \ln(x-5) \xrightarrow{5^+} -\infty$ The arrows help justify the size argument(s).

Ex: $\lim_{x \rightarrow 8^-} \ln|x-8| = \lim_{x \rightarrow 8^-} \ln|x-8| \xrightarrow{8^-} -\infty$

$$\begin{aligned} \text{Ex: } & \int \frac{(3-\sqrt{x})(1+2\sqrt{x})}{x^2} dx = \int \frac{3+6\sqrt{x}-\sqrt{x}-2x}{x^2} dx = \int \frac{3+5\sqrt{x}-2x}{x^2} dx \\ & = \int \frac{3}{x^2} + \frac{5\sqrt{x}}{x^2} - \frac{2x}{x^2} dx = \int \frac{3}{x^2} + \frac{5}{x^{\frac{3}{2}}} - \frac{2}{x} dx = \int \frac{3}{x^2} + \frac{5}{x^{\frac{3}{2}}} - \frac{2}{x} dx \\ & \stackrel{\text{prep}}{=} \int 3x^{-2} + 5x^{-\frac{3}{2}} - \frac{2}{x} dx = -3x^{-1} + 5(-2)x^{-\frac{1}{2}} - 2 \ln|x| + C = \left[-\frac{3}{x} - \frac{10}{\sqrt{x}} - 2 \ln|x| + C \right] \end{aligned}$$

$$\text{Ex: } \int_{\ln 3}^{\ln 8} \frac{e^x}{\sqrt{1+e^x}} dx = \int_4^9 \frac{1}{\sqrt{u}} du = \int_4^9 u^{-\frac{1}{2}} du = 2\sqrt{u} \Big|_4^9 = 2\sqrt{9} - 2\sqrt{4} = 6 - 4 = 2$$

Here $\begin{cases} u = 1 + e^x \\ du = e^x dx \end{cases}$ and $\begin{cases} x = \ln 3 \implies u = 1 + e^{\ln 3} = 1 + 3 = 4 \\ x = \ln 8 \implies u = 1 + e^{\ln 8} = 1 + 8 = 9 \end{cases}$

$$\text{Ex: } \int_1^2 \frac{1}{3-5x} dx = -\frac{1}{5} \int_{-2}^{-7} \frac{1}{u} du = -\frac{1}{5} \ln|u| \Big|_{-2}^{-7} = -\frac{1}{5} (\ln|-7| - \ln|-2|) = \left[-\frac{1}{5} \ln\left(\frac{7}{2}\right) \right]$$

Here $\begin{cases} u = 3 - 5x \\ du = -5 dx \\ -\frac{1}{5} du = dx \end{cases}$ and $\begin{cases} x = 1 \implies u = 3 - 5 = -2 \\ x = 2 \implies u = 3 - 10 = -7 \end{cases}$

Next, Complete the following Homework problems.

Differentiate the following functions. Simplify.

$$1. f(x) = e^5 \quad 2. f(x) = e^x + x^e \quad 3. y = \frac{1 - e^{2x}}{1 + e^{2x}} \quad 4. f(x) = e^{\sin(2x)} + \sin(e^{2x})$$

$$5. y = e^{\sqrt{x}} \quad 6. y = x^2 e^{-\frac{1}{x}} \quad 7. y = \ln(1 + e^{3x}) \quad 8. f(x) = \ln\left(\frac{1}{x}\right) + \frac{1}{\ln x}$$

9. Express the quantity as a single logarithm. Simplify.

$$\frac{1}{3} \ln[(x+2)^3] + \frac{1}{2} [\ln x - \ln[(x^2 + 3x + 2)^2]]$$

Solve each of the following equations for x :

$$10. e^{7-4x} = 6$$

$$11. \ln(3x - 10) = 2$$

Evaluate each of the following Limits. Justify the size argument(s) using arrows.

$$12. \lim_{x \rightarrow 2^-} \ln|x - 2|$$

$$13. \lim_{x \rightarrow 3^+} \ln(x^2 - 9)$$

Evaluate each of the following Integrals. Simplify. Justify.

$$14. \int e^x + x^e \, dx \quad 15. \int_0^{\ln 4} \frac{1}{e^{2x}} \, dx \quad 16. \int \frac{(1 + e^x)^2}{e^x} \, dx$$

$$17. \int (e^x + e^{-x})^2 \, dx \quad 18. \int \frac{e^x}{1 + e^x} \, dx \quad 19. \int_2^3 \frac{1}{5 - 4x} \, dx$$

$$20. \int_e^{e^3} \frac{4}{x(\ln x)^2} \, dx$$

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

6–9:00pm TAs Emma/Myles, SMUDD 204

Tuesday: 1:00–4:00 pm

5:30–7:00 pm TA Julia, SMUDD 204

7:30–9:00 pm TA Emma, SMUDD 204

Wednesday: 1:00–3:00 pm

6–10:30 pm TAs Julia/Myles/Natalie, SMUDD 204

Thursday: 10–11:30 am

7:30–10:30 pm TAs Natalie/DJ, SMUDD 204

Friday: 12:00–2:00 pm

7:30–9:00 pm TA DJ, SMUDD 204

- Office Hours are open to everyone. Please feel welcome whether you have lots of questions or just one question. Just stop by. :-) Working on your calculus assignment can be fun! You are encouraged to make fully engaged visits to office hours **each** week. I hope that you come hang out at many help sessions.
- **NO LATE HOMEWORK!** unless illness or emergency occurs.