
Math 121, Section(s) 01, 02 Fall 2025

Homework #18

Due Friday, November 21st in Gradescope by 11:59 pm ET

Goal: Exploring More complicated Sums and Limits using Series.

FIRST: Read through and understand the following Examples.

Find the sum of each of the following series (which do converge). Simplify.

TIP: For these values, it could help to write out the general MacLaurin Series in x first.
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Ex: Use series to compute this Limit.

lim
x→0

x2 + x− arctanx

1− 3x− e−3x
= lim

x→0

x2 +�x−
(
�x− x3

3
+

x5

5
− . . .

)
�1−��3x−

(
�1−��3x+

32x2

2!
− 33x3

3!
+ . . .

)

= lim
x→0

x2 +
x3

3
− x5

5
+ . . .

−32x2

2!
+

33x3

3!
− 34x4

4!
+ . . .

·
1
x2

1
x2

= lim
x→0

1 +��������: 0x

3
− x3

5
+ . . .

− 9

2!
+��������:033x

3!
− 34x2

4!
+ . . .

=
1

−9
2

= −2

9

Continue on and Complete the next page of problems



Find the sum of each of the following series (which do converge). Simplify.
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REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

6–9:00pm TAs Emma/Myles, SMUDD 204

Tuesday: 1:00–4:00 pm

5:30–7:00 pm TA Julia, SMUDD 204

7:30-9:00 pm TA Emma, SMUDD 204

Wednesday: 1:00-3:00 pm

6–10:30 pm TAs Julia/Myles/Natalie, SMUDD 204

Thursday: 10-11:30 am

7:30–10:30 pm TAs Natalie/DJ, SMUDD 204

Friday: 12:00–2:00 pm

7:30–9:00 pm TA DJ, SMUDD 204

Match the sum formulas precisely.

Pattern find and check your guess too.

Happy short vacation!


