

Homework #16

Due Friday, November 14th in Gradescope by 11:59 pm ET

Goal: Exploring more of the Relationship between Power Series and functions, including Differentiation and Integration of Power Series. Also *substitution* into a known MacLaurin Series. Also SUMS which are not Geometric.

FIRST: Read through and understand the following Examples. Simplify.

Ex: Use *Substitution* to find the Series for this function and find the Radius of Convergence.

$$\begin{aligned} \frac{d}{dx} \left(x^2 \ln(1 + 5x) \right) &\stackrel{\text{sub}}{=} \frac{d}{dx} \left(x^2 \sum_{n=0}^{\infty} \frac{(-1)^n (5x)^{n+1}}{n+1} \right) = \frac{d}{dx} \left(x^2 \sum_{n=0}^{\infty} \frac{(-1)^n 5^{n+1} x^{n+1}}{n+1} \right) \\ &= \frac{d}{dx} \sum_{n=0}^{\infty} \frac{(-1)^n 5^{n+1} x^{n+3}}{n+1} = \boxed{\sum_{n=0}^{\infty} \frac{(-1)^n 5^{n+1} (n+3) x^{n+2}}{n+1}} \text{ Need } |5x| < 1 \\ \Rightarrow |x| < \frac{1}{5}. R = \frac{1}{5} &\text{ The Radius is unchanged after Differentiation. Here } \boxed{R = \frac{1}{5}} \text{ still.} \end{aligned}$$

Note how we were able to avoid running a Ratio Test for find the Radius of Convergence.

Ex: Find the Series Representation for $\ln(9 + x^2)$. One method uses Integration.

$$\begin{aligned} \ln(9 + x^2) &\stackrel{\text{hint}}{=} \int \frac{2x}{9 + x^2} dx = \int 2x \cdot \frac{1}{9 + x^2} dx = \int \frac{2x}{9} \cdot \frac{1}{1 - \left(\frac{-x^2}{9} \right)} dx \\ &= \int \frac{2x}{9} \sum_{n=0}^{\infty} \left(\frac{-x^2}{9} \right)^n dx = \int \frac{2x}{9} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{9^n} dx = \int 2 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{9^{n+1}} dx \\ &= 2 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{9^{n+1}(2n+2)} + C = 2 \left(\frac{x^2}{9 \cdot 2} - \frac{x^4}{9^2 \cdot 4} + \frac{x^6}{9^3 \cdot 6} - \dots \right) + C \end{aligned}$$

Test $x = 0$ into both sides to solve for C . Expand in long form to fully justify.

$$\ln(9 + 0) = 2 \left(\frac{0}{9 \cdot 2} - \frac{0}{9^2 \cdot 4} + \frac{0}{9^3 \cdot 6} - \dots \right) + C \Rightarrow C = \ln 9 \quad \text{Plug } C \text{ value back in}$$

$$\text{Finally, } \ln(9 + x^2) = \boxed{2 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{9^{n+1}(2n+2)} + \ln 9} \text{ or } \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{9^{n+1}(n+1)} + \ln 9$$

Need $\left| -\frac{x^2}{9} \right| < 1 \Rightarrow |x|^2 < 9 \Rightarrow |x| < 3$ so $R = 3$. The Radius remains unchanged after Integration above. So $\boxed{R = 3}$ still.

Continue on and Complete the next page of problems

Find the Series Representation for the following functions using *substitution* and determine the Radius of Convergence R . Simplify.

1. $\frac{1}{1+x^2}$

2. $\frac{x^2}{16+x^4} = x^2 \left(\frac{1}{16+x^4} \right)$

3. $x^3 \cos(x^2)$

4. $5x^2 \sin(5x)$

5. $\frac{d}{dx} (x^3 \arctan(7x))$

6. $\int x^3 \arctan(7x) \, dx$

7. $\frac{d}{dx} x^2 \ln(1+6x)$

8. $\int x^4 e^{-x^3} \, dx$

9. Find the Series Representation for $f(x) = \frac{1}{(1+x)^2}$

Hint: $\frac{1}{(1+x)^2} = \frac{d}{dx} \left(-\frac{1}{1+x} \right) \xrightarrow{PS?} \dots$

10. Prove the Power Series Representation formula for $\arctan x$, as shown in class. Yes, show that $C = 0$.

It is most convincing to expand your series in *long expanded form* to best solve for C , by plugging in or testing the value of the center point, here $x = 0$, into both sides of the equation

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + C$$

11. Find Series Representation for $\ln(5-x)$. Solve for C and the Radius R .

Hint: $\ln(5-x) = \int \frac{-1}{5-x} \, dx = \int \frac{-1}{5 \left(1 - \frac{x}{5}\right)} \, dx = -\frac{1}{5} \int \frac{1}{1 - \frac{x}{5}} \, dx \xrightarrow{PS?} \dots$

12. Find the MacLaurin Series for $f(x) = e^{-2x}$ using two different methods. Your answers should be in Sigma notation.

First, using the *Definition* of the MacLaurin Series (“Chart Method”).

Second, use *Substitution* into a known series.

Continue to next page

13. You do **not** need to state the Radius. Answers should be in Sigma notation $\sum_{n=0}^{\infty}$ here.

You may use the fact that $\boxed{\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}}$ without extra justification.

(a) Use the Definition (“Chart Method”) to compute the MacLaurin Series for $F(x) = \cos x$.

(b) Use Differentiation to compute the Series for $F(x) = \cos x$.

Hint: $\cos x = \frac{d}{dx} \sin x = \frac{d}{dx} \sin x \xrightarrow{\text{PS?}} \dots$

(c) Use Integration to compute the Series for $F(x) = \cos x$.

Hint: $\cos x = \int -\sin x \, dx = \int -\sin x \, dx \xrightarrow{\text{PS?}} \dots$

Hints: yes, you should solve for $+C$. yes, C should equal 1. Show why $C = 1$.

Find the Sum of each of the following Series, which do converge.

14. $\sum_{n=0}^{\infty} \frac{7^n}{n!}$

15. $\sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{n!}$

16. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$

17. $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$

18. $\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$

19. $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$

20. $1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \dots$

21. $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

6–9:00pm TAs Emma/Myles, SMUDD 204

Tuesday: 1:00–4:00 pm

5:30–7:00 pm TA Julia, SMUDD 204

7:30-9:00 pm TA Emma, SMUDD 204

Wednesday: 1:00-3:00 pm

6–10:30 pm TAs Julia/Myles/Natalie, SMUDD 204

Thursday: 10-11:30

7:30–10:30 pm TAs Natalie/DJ, SMUDD 204

Friday: 12:00–2:00 pm

7:30–9:00 pm TA DJ, SMUDD 204

Pay careful attention to details here.

Manipulating power series requires a balance
of memory and technical skill.