

Homework #14

Due **Wednesday, October 29th** in Gradescope by 11:59 pm ET

Goal: Exploring Convergence of Infinite Series. Focus on Absolute and Conditional Convergence...also using the Absolute Convergence Test. Finally... some review problems.

FIRST: Read through and understand the following Examples. Determine whether the Series is Absolutely Convergent, Conditionally Convergent, or Divergent.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 7}{n^7 + 2} \hookrightarrow \text{A.S.} \sum_{n=1}^{\infty} \frac{n^2 + 7}{n^7 + 2} \approx \sum_{n=1}^{\infty} \frac{n^2}{n^7} = \sum_{n=1}^{\infty} \frac{1}{n^5} \text{ Converges } p\text{-series } p = 5 > 1.$$

$$\text{Check: } \lim_{n \rightarrow \infty} \frac{\frac{n^2 + 7}{n^7 + 2}}{\frac{1}{n^5}} = \lim_{n \rightarrow \infty} \frac{n^7 + 7n^5}{n^7 + 2} \cdot \frac{\frac{1}{n^7}}{\frac{1}{n^5}} = \lim_{n \rightarrow \infty} \frac{1 + \frac{7}{n^2}}{1 + \frac{2}{n^7}} \xrightarrow[0]{0} 1 \text{ Finite/Non-zero}$$

The **Absolute Series** $\sum_{n=1}^{\infty} \frac{n^2 + 7}{n^7 + 2}$ also **Converges** by Limit Comparison Test (LCT).

Finally, the Original Series is Absolutely Convergent (A.C.) (by Definition).

$$\text{Ex: } \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{7n+3} \hookrightarrow \text{A.S.} \sum_{n=1}^{\infty} \frac{1}{7n+3} \approx \sum_{n=1}^{\infty} \frac{1}{n} \text{ Divergent Harmonic } p\text{-Series } p = 1$$

$$\text{Check: } \lim_{n \rightarrow \infty} \frac{\frac{1}{7n+3}}{\frac{1}{n}} = \lim_{n \rightarrow \infty} \frac{n}{7n+3} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \rightarrow \infty} \frac{1}{7 + \frac{3}{n}} \xrightarrow[0]{0} \frac{1}{7} \text{ Finite/Non-zero.}$$

Therefore, the **Absolute Series** also **Diverges** by Limit Comparison Test.

Now, we must examine the original alternating series with the Alternating Series Test.

- Isolate $b_n = \frac{1}{7n+3} > 0$

- $\lim_{n \rightarrow \infty} b_n = \lim_{n \rightarrow \infty} \frac{1}{7n+3} \xrightarrow{\infty} 0$

- Terms Decreasing $b_{n+1} < b_n$ because $b_{n+1} = \frac{1}{7(n+1)+3} = \frac{1}{7n+10} < \frac{1}{7n+3} = b_n$

Therefore, the **Original Series Converges** by the Alternating Series Test. Finally, we can conclude the Original Series is Conditionally Convergent (C.C.) (by Definition).

Now complete the following HW problems

Determine whether the given series is Absolutely Convergent, Conditionally Convergent or Divergent. Number 3 is Ratio Test, but use the AC and CC charts for 1, 2, 4, 5.

Make sure to look at the sample problems (above) first for guidance.

$$1. \sum_{n=1}^{\infty} (-1)^n \frac{n^3 + 8}{n^8 + 3} \quad 2. \sum_{n=1}^{\infty} \frac{(-1)^n}{5n + 1} \quad 3. \sum_{n=1}^{\infty} \frac{(-1)^n (\ln n) (2n)!}{n^n 2^{3n} (n!)}$$

$$4. \sum_{n=1}^{\infty} (-1)^n \frac{n + 1}{n^2} \quad 5. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^3}{n^7 + 2}$$

6. Write the statement of the Absolute Convergence Test.

7. Use the Absolute Convergent Test to show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3 + 1}$ Converges.

8. Use the Absolute Convergent Test to show that $\sum_{n=1}^{\infty} \frac{(-1)^n \sin^2 n}{n^8 + 2}$ Converges.

Review

9. Show that the Sequence $\left\{ \left(\frac{n}{n+1} \right)^n \right\}_{n=1}^{\infty}$ Converges to $\frac{1}{e}$. Hint: See HW 6, #2.

10. Determine if the Series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^n$ Converges or Diverges.

Hint: Reference the work/conclusion from 9 above.

11. Find the Sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^n 5^{2n+1}}{2^{5n-1}}$.

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

6–9:00pm TAs Emma/Myles, SMUDD 204

Tuesday: 1:00–4:00 pm

5:30–7:00 pm TA Julia, SMUDD 204

7:30-9:00 pm TA Emma, SMUDD 204

Wednesday: 1:00-3:00 pm

6–10:30 pm TAs Julia/Myles/Natalie, SMUDD 204

Thursday: 10–11:30 am

extras may be added, TBD weekly

7:30–10:30 pm TAs Natalie/DJ, SMUDD 204

Friday: 12:00–2:00 pm

7:30–9:00 pm TA DJ, SMUDD 204

This is the end of the material for the Exam 2. Material stops after
Section 11.6 Absolute Convergence Test and Ratio Test
and Absolute/Conditional Convergence.