

Homework #12

Due **Wednesday, October 22nd** in Gradescope by 11:59 pm ET

Goal: Exploring Convergence of Infinite Series. Focus on Integral Test, p -series, Comparison and Limit Comparison Test. We will also focus on fluency of training, using multiple tests.

FIRST: Read through and understand the following Examples. Determine whether the given Series Converges or Diverges. Justify with any Convergence Test(s).

Ex: $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ Related Function $f(x) = \frac{\ln x}{x}$ continuous ($x > 0$), positive ($x > 1$),

decreasing $f'(x) = \frac{1 - \ln x}{x^2} < 0$ for $x > e$. Study the Related Integral

$$\int_2^{\infty} \frac{\ln x}{x} dx = \lim_{t \rightarrow \infty} \int_2^t \frac{\ln x}{x} dx = \lim_{t \rightarrow \infty} \int_{\ln 2}^{\ln t} u du = \lim_{t \rightarrow \infty} \frac{u^2}{2} \Big|_{\ln 2}^{\ln t} = \lim_{t \rightarrow \infty} \frac{(\ln t)^2}{2} - \frac{(\ln 2)^2}{2} = \infty$$

$$\boxed{u = \ln x \\ du = \frac{1}{x} dx}$$

$$\boxed{x = 2 \Rightarrow u = \ln 2 \\ x = t \Rightarrow u = \ln t}$$

Therefore, the Improper Integral Diverges. As a result, the Original Series also **Diverges by the Integral Test**. Make sure to have two separate conclusions here. The first implies the second.

Ex: $\sum_{n=1}^{\infty} \frac{1}{n^3 + 7} \approx \sum_{n=1}^{\infty} \frac{1}{n^3}$ ← Comparison Series: Convergent p -series $p = 3 > 1$

Bound Terms

$\frac{1}{n^3 + 7} \leq \frac{1}{n^3}$. Therefore, the Original Series also **Converges by the Comparison Test**.

Ex: $\sum_{n=1}^{\infty} \frac{n^3 + 2}{n^4 + 8} \approx \sum_{n=1}^{\infty} \frac{n^3}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n}$ ← Comparison Series: Divergent p -series $p = 1$

Next check: $\lim_{n \rightarrow \infty} \frac{\frac{n^3 + 2}{1}}{\frac{n^4 + 8}{n}} = \lim_{n \rightarrow \infty} \frac{n^4 + 2n}{n^4 + 8} \frac{\left(\frac{1}{n^4}\right)}{\left(\frac{1}{n^4}\right)} = \lim_{n \rightarrow \infty} \frac{1 + \frac{2}{n^3}}{1 + \frac{8}{n^4}} = 1$ Finite and Non-Zero

Therefore, the Original Series also **Diverges by the Limit Comparison Test**.

Continue to NEXT Page for HW problems.

Use the Integral Test to determine whether the given series Converges or Diverges. You do **NOT** need to check the 3 pre-conditions for the Integral Test this time.

1. $\sum_{n=1}^{\infty} \frac{1}{n}$ 2. $\sum_{n=1}^{\infty} \frac{1}{n^3}$ 3. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ 4. $\sum_{n=1}^{\infty} \frac{n}{e^n}$

5. Consider $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$. Use **two** Different methods, namely the Integral Test (no pre-Condition check needed) and the Comparison Test, to prove that this series Converges.

Determine if the series Converges or Diverges using either the Comparison **OR** Limit Comparison Test.

6. $\sum_{n=1}^{\infty} \frac{9^n}{3 + 10^n}$ 7. $\sum_{n=1}^{\infty} \frac{n^2 + 5}{n^3}$ 8. $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n} + 2}$ 9. $\sum_{n=1}^{\infty} \frac{n^2 + 7}{n^7 + 2}$

10. Consider $\sum_{n=1}^{\infty} \frac{5n^2 + n}{n^4}$. Use **two** Different methods to prove that this series Converges. Use the Limit Comparison Test and then a *split-split* algebra technique into *p*-series pieces.

Determine whether the given series Converges or Diverges. Justify.

11. $\sum_{n=1}^{\infty} \sin^2 \left(\frac{\pi n^4 + 1}{6n^4 + 5} \right)$ 12. $\sum_{n=1}^{\infty} \frac{\sin^2(\pi n^4 + 1)}{6n^4 + 5}$ 13. $\sum_{n=1}^{\infty} \frac{7}{n^9} + \frac{7^n}{9^n}$

hint: $\sin(A) \leq 1$

hint: $\sin^2 A \leq 1$ and Comparison Test

REVIEW

14. $\sum_{n=1}^{\infty} n^6 + 6$ 15. $\sum_{n=1}^{\infty} \frac{n^6 + 6}{n^6 + 1}$ 16. $\sum_{n=1}^{\infty} \frac{1}{n^6 + 1}$

REGULAR OFFICE HOURS

Monday: 12:00–3:00 pm

6–9:00pm TAs Emma/Myles, SMUDD 204

Tuesday: 1:00–4:00 pm

5:30–7:00 pm TA Julia, SMUDD 204

7:30-9:00 pm TA Emma, SMUDD 204

Wednesday: 1:00-3:00 pm

6–10:30 pm TAs Julia/Myles/Natalie, SMUDD 204

Thursday: 10–11:30 am

extras may be added, TBD weekly

7:30–10:30 pm TAs Natalie/DJ, SMUDD 204

Friday: 12:00–2:00 pm

7:30–9:00 pm TA DJ, SMUDD 204

Train your Convergence Tests Daily