
Math 121 Introduction to Sequences

The objective of this handout is to introduce the topic of Infinite Sequences. We will pay
careful attention to what they are, how they are defined, how to decide convergence of each,
as well as how they are related. We will also list a few classic examples of Sequences, and
finally we will start to study the limiting values, if they exist.

First, this topic is a first stop in a larger plan. We will spend about 6 weeks studying Infinite
Sums of Real numbers, called Infinite Series.

Really Long Term Goal: To Study the relationship between Series and Functions

Long Term Goal: To Study Infinite Series

Short Term Goal: To Study Infinite Sequences.

Throughout this study of sequences and series, we will pay particular attention to the use
of Conditional Statements in the form IF . . . THEN . . .

Let’s start with the definition of an Infinite Sequence.

• Infinite Sequences Definition

Definition: An Infinite Sequence of real numbers is an ordered, unending list of numbers.

a1, a2, a3, a4, . . . , an−1, an, an+1, . . .

Here, an is acting as the nth term of the infinite list where the positive integer counters
n = 1, 2, 3, . . ., are keeping the values organized in placement order in the infinite list.

a1 represents the first term in the list

a2 represents the second term in the list
...
an represents the nth term in the list

an+1 represents the (n + 1)st term in the list
...

It is key to recognize that this list is infinite and goes on forever, so we need to always make
sure to add the dot, dot, dot symbol . . . at the end every time. Terms of an Infinite List are
separated by commas.
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It can be difficult to represent an infinite list of numbers, so we abbreviate the sequence
terms with a concise notation. Here n is an integer counter for the terms.

{an}∞n=1 or {an}∞1 or {an}n≥1 or even {an} for short

To clarify, the bracket notation should instantly make you think of an infinite LIST.

{an}∞n=1 = a1, a2, a3, a4, . . . , an−1, an, an+1, . . .

Here, again, n is acting as the Counter Index n = 1, 2, 3, . . ..

n = 1 counts the first term in the list

n = 2 counts the second term in the list
...
n counts the nth term in the list

n + 1 counts the (n + 1)st term in the list
...

Notation is key here, but we also have flexibility. We can use a different variable to represent
the counter index n = 1, 2, 3, . . .. That is,

{an}∞n=1 = {ai}∞i=1 = {aj}∞j=1 = {ak}∞k=1 = a1, a2, a3, a4, a5, . . .

Because we typically use n to represent the postive counting integers, n = 1, 2, 3 . . ., for now,
we agree that the counter index starts at n = 1. When we study series in the future, that
may change.
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• Infinite Sequences Examples Sequences come in many forms, including increasing,
decreasing, or even alternating. Here is an example of a decreasing sequence.

Ex:

{
1

n

}∞
n=1

= 1,
1

2
,

1

3
,

1

4
,

1

5
, . . .

Here the sequence term formula is given by an =
1

n
, as posted between the brackets { and }.

To clarify the partnership between the counter numbers n = 1, 2, 3 . . . and the output of the
valued terms of each sequence determined by a given nth term formula, study this ordering

{
1

n

}∞
n=1

=
n=1

1
1st term

,

n=2

1

2
2nd term

,

n=3

1

3
3rd term

,

n=4

1

4
4th term

,

n=5

1

5
5th term

, . . .

Chart of Examples

SEQUENCE nth term LIST LIST Appears to Approach
{an}∞n=1 an a1, a2, a3, a4, . . . as n −→∞

{n}∞n=1 an = n 1, 2, 3, 4, 5, 6, . . . −→∞ ??

{6}∞n=1 an = 6 6, 6, 6, 6, 6, 6, . . . −→ 6 ??

{2n}∞n=1 an = 2n 2, 4, 8, 16, 32 . . . −→∞ ??

{n2}∞n=1 an = n2 1, 4, 9, 16, 25, . . . −→∞ ??

{
1

n2

}∞
n=1

an =
1

n2
1,

1

4
,
1

9
,

1

16
,

1

25
, . . . −→ 0 ??

{
1

(10)n

}∞
n=1

an =
1

(10)n

1

10
,

1

100
,

1

1000
,

1

10, 000
, . . . −→ 0 ??

{
(−1)n

n

}∞
n=1

an =
(−1)n

n
1,−1

4
,
1

9
,− 1

16
,

1

25
,− 1

36
, . . . −→ 0 ??
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QUESTION: Do these Infinite Sequences have Limiting values, as the number of terms
n→∞?

The Sequence {an}∞n=1 Converges to the Limit value L if lim
n→∞

an = L for some Finite Limit L.

Otherwise, we say the Sequence Diverges. A sequence can diverge when terms explode
in size towards either +∞ or −∞, as the counter n grows. OR the terms can diverge by
oscillation.

Many questions arise:

• Does a list of numbers approach a fixed number or Limit L?

• Not only does the list get close to a limit L, but does it remain close to L?

• If some limit L exists, how do we compute that number L?

• Limit Computations: There are several methods for computing Limits of sequences.
We will just mention a few here to get started. These computations can range from lighter
natural instincts of size all the way to a very complex proof argument at the higher level.
Many involve foundational growth and algebra arguments.

Plan of attack: Given an Infinite Sequence {an}∞n=1, step aside from the bracket notation
and study the Limiting value of (just) the term formula an, letting n grow large towards ∞.
That is,

Given {an}∞n=1 study lim
n→∞

an

To study the Limit of a sequence, make sure to drop the notational brackets in the Limit.
No need to write out the first few terms. Our instincts will prove correct in many cases:

Ex: Given {n2}∞n=1 then lim
n→∞

n2 = lim
n→∞

���
∞

n2 =∞. The Sequence Diverges.

Ex: Given constant sequence {6}∞n=1, then lim
n→∞

6 = 6. The Sequence Converges to the finite

value 6.

Ex: Given

{
1

n3

}∞
n=1

then lim
n→∞

1

n3
= lim

n→∞
�
�
�
��
0

1

���
∞

n3

= 0. The sequence Converges to 0.
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Note that the Limit Laws still work in this setting. Our Calculus instincts/permissions with
Limits are still in place, even though our measure of change is with respect to n→∞ where
n represents positive counting integers rather than all real numbers. We will see they are
related in the future. For now, here are a few of the Limit Laws for sequences.

• Limit Laws for Sequences

If {an} and {bn} are both convergent sequences and c is a constant, then

• lim
n→∞

an ± bn = lim
n→∞

an ± lim
n→∞

bn • lim
n→∞

can = c lim
n→∞

an

• lim
n→∞

c = c • lim
n→∞

an · bn = lim
n→∞

an · lim
n→∞

bn

• lim
n→∞

an

bn

=
lim

n→∞
an

lim
n→∞

bn

provided the denominator limit is non-zero

• Limit Examples: Question: Determine whether the given sequence Converges or Di-
verges. If it converges, find the Limit.

• Limits of Stacks of Polynomials: These should remind you of Limits at Infinity (like
Horizontal Asymptotes) from Calculus I.

Ex: Consider

{
5n3 − 6n2 + 9

7n3 + 4n− 2

}∞
n=1

. Study the limiting value of the terms.

lim
n→∞

5n3 − 6n2 + 9

7n3 + 4n− 2
= lim

n→∞

5n3 − 6n2 + 9

7n3 + 4n− 2
·

(
1

n3

)
(

1

n3

) = lim
n→∞

5−
�
�
���
0

6

n
+
�
�
���
0

9

n3

7 +
�
�
���
0

4

n2
−
�
�
���
0

2

n3

=
5

7
Finite

We say the Sequence Converges to
5

7
because the terms settle to that value for large n.

Ex: Consider

{
7n2 − 3n− 2

9− 8n2

}∞
n=1

. Study the limiting value of the terms.

lim
n→∞

7n2 − 3n− 2

9− 8n2
= lim

n→∞

7n2 − 3n− 2

9− 8n2
·

(
1

n2

)
(

1

n2

) = lim
n→∞

7−
�
�
���
0

3

n
+
�
�
���
0

2

n2

�
�
���
0

9

n2
− 8

= −7

8
Finite

We say the Sequence Converges to −7

8
because the terms settle to that value for large n.
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• Factorials, Definition

Dealing with large products of numbers can be complicated. Shorthand notation is helpful.

Definition: n Factorial is the product of all positive integers less than or equal to the
number n. This large product is denoted with the number n and an exclamation point.

n!
definition

= n(n− 1)(n− 2)(n− 3) · . . . · 5 · 4 · 3 · 2 · 1

Study a few examples:

Ex: 3! = 3 · 2 · 1 = 6

Ex: 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

Ex: (12)! = 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 470, 001, 600

Ex: Note that 0! is defined to be equal to 1.

These Factorial values n! grow very large, very quickly, as n→∞. That is, lim
n→∞

���
∞

n! =∞

Note that n Factorial can be written several ways

n! = n (n− 1)

(n−2)!︷ ︸︸ ︷
(n− 2)(n− 3) · . . . · 5 · 4 · 3 · 2 · 1︸ ︷︷ ︸

(n−1)!

or
= n · (n− 1)!

or
= n · (n− 1) · (n− 2)!

For example, we can write

5! = 5 · 4 ·
3!︷ ︸︸ ︷

3 · 2 · 1︸ ︷︷ ︸
4!

or
= 5 · 4!

or
= 5 · 4 · 3!

• Factorial Algebra

Since Factorials are large products, we can often cancel values when they are stacked against
other Fatorials.

Ex: Simplify
6!

4!
=

6 · 5 · 4 · 3 · 2 · 1
4 · 3 · 2 · 1

=
6 · 5 ·((((((4 · 3 · 2 · 1
((((

((
4 · 3 · 2 · 1

= 6 · 5 = 30

Ex: Simplify
5!

8!
=

5 · 4 · 3 · 2 · 1
8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

=
((((

(((5 · 4 · 3 · 2 · 1
8 · 7 · 6 ·(((((

((
5 · 4 · 3 · 2 · 1

=
1

8 · 7 · 6
=

1

336
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• Factorial Limits We can now study Limiting values for Sequences involving Factorials.

Q: Determine whether the sequence Converges or Diverges. If it converges, find the Limit.

Ex:

{
n!

(n + 1)!

}∞
n=1

Study the limiting value of the terms an =
n!

(n + 1)!
.

TIP: Remember to drop the bracket notation.

lim
n→∞

n!

(n + 1)!
= lim

n→∞

n(n− 1)(n− 2)(n− 3) · . . . · 5 · 4 · 3 · 2 · 1
(n + 1)n(n− 1)(n− 2)(n− 3) · . . . · 5 · 4 · 3 · 2 · 1

= lim
n→∞ ((((

(((
((((

(((
((((

((((

n(n− 1)(n− 2)(n− 3) · . . . · 5 · 4 · 3 · 2 · 1

(n+1)
((((

((((
((((

(((
((((

(((

n(n− 1)(n− 2)(n− 3) · . . . · 5 · 4 · 3 · 2 · 1

= lim
n→∞

1

n + 1
= lim

n→∞�
�
���

0
1

���
�:∞n + 1

= 0

OR try this again using shorthand notation

lim
n→∞

n!

(n + 1)!
= lim

n→∞

n!

(n + 1) · n!
= lim

n→∞
��n!

(n + 1) ·��n!
= lim

n→∞

1

n + 1
= lim

n→∞�
�
���

0
1

��
��:∞n + 1

= 0

We say this Sequence Converges to 0.

Ex:

{
(n + 1)!

(n− 1)!

}∞
n=1

Study

lim
n→∞

(n + 1)!

(n− 1)!
= lim

n→∞

(n + 1) · n ·�����(n− 1)!

���
��(n− 1)!

= lim
n→∞�

���
��:∞

(n + 1) · n =∞

We say this Sequence Diverges to ∞.

Ex:

{
(2n)!

(2n + 2)!

}∞
n=1

Study

lim
n→∞

(2n)!

(2n + 2)!
= lim

n→∞
��
�(2n)!

(2n + 2)(2n + 1)��
�(2n)!

= lim
n→∞���

���
���

�:01

��
���

�:∞
(2n + 2)·(2n + 1)

= 0

We say this Sequence Converges to 0.

Next, we will study a careful approach to computing complicated Limits. To come in class...
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• Function Relationship Some Limits involve using L’Hôpital’s Rule. We will need to
work with related functions because we may need to take derivatives.

Think of the terms of a sequence as defined by a single, related function where the terms
an = f(n).

For instance, the sequence

{
1

n

}∞
n=1

= 1,
1

2
,
1

3
, . . . has a related function f(x) =

1

x

Essentially, we have a formula for the terms of the sequence. The terms of the sequence can
be represented as output plot points on the graph of f(x), when you restrict the domain of
f to a domain of positive integers n. Below f(x) is drawn as the curve, and the dots are the
sequence terms plotted along this curve. Since the sequence terms lie along the curve f(x),
it makes sense that the behavior of the sequence terms might be related to the behavior of
the function.

� -

6

?

t
t

t t t

a1

a2

a3

a4
a5

1 2 3 4 5

y=f(x)

x

Theorem: Given a sequence {an}, if there is related function f(x) so that the terms of our
sequence an = f(n) and if lim

x→∞
f(x) = L, then lim

n→∞
an = L

Here we can use all of our previous limit techniques for functions. Please note that if you are
going to apply L’H Rule, then technically you must really step aside and look at the related
function f of x, since L’H Rule is not stated for terms of sequences.

Example: Does the sequence

{
ln n

n

}∞
n=1

converge?

lim
n→∞

ln n

n
Dots

= lim
x→∞

ln x

x
Function

(∞∞)
L′H
= lim

x→∞

1

x
1

= lim
x→∞

1

x
= 0

Finally, our given sequence Converges to the finite value 0.

Key Point: It is not true that the terms
ln n

n
(where n = 1, 2, 3, . . .) are equal to the function

ln x

x
, but they share the same Limit, if it exists.
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