Extra Examples of Interval and Radius of Convergence

Find the Interval and Radius of Convergence for the following power series. Analyze
carefully and with full justification.
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The Ratio Test gives convergence for  when <1lor |3z —4| <5.

(Note: Must make this statement above)
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Thatis,—5<3x—4<5:>—1<3$<9:>—§<x<3

Manually Test Endpoints: (where L = 1 and Ratio Test is Inconclusive)
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3. Terms decreasing: b, = < =b, = x =2 is Included in the Domain.

vn+2  Vn+1

= 0 (3(5) 1) ey

1
ex = —— The original series becomes
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ex = 3 The original series becomes Z
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Therefore, Z is also Divergent by LCT = x = —3 is NOT included in the Domain.
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Finally, Interval of Convergence | I = (—g, 3] with Radius of Convergence | R = 3
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Find the Interval and Radius of Convergence for each of the following power series. Analyze
carefully and with full justification.
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Diverges by the Ratio Test for all x unless © —6 =0 or x =6 (when L =0 < 1)

(Note: Must make this statement above)

So[I = {6}|with[R =0]
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Converges by the Ratio Test for all Real numbers z

(Note: Must make this statement above)
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