Review Packet for Exam #3

Math 121-D. Benedetto

Interval of Convergence: Find the Interval and Radius of Convergence for each of the
following power series. Analyze convergence at the endpoints carefully, with full justification.
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Estimates: Use a Power Series Representation for each of the following functions to esti-
mate each one within the given error. ESTIMATE ...
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MacLaurin Series:
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Power Series Representations of Functions:

Find the MacLaurin Series for each of the following functions, and
state the corresponding Radius of Convergence. Answer in Sigma notation.

1—e®
26. —© 27. 2*In(1 + 2%)
x
d 5. (3
29. xarctan(2z) 30. o3 sin (2°)
T

32. %x‘l In (1 + 8z)

(L4 T2)?2 dae \7(14T2)

33. /Gx3 cos (6x2) dx

Use a Power Series Representation for

each of the following functions to compute the given integral. ESTIMATE each one within

the given error.
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Sums: Find the sum for each of the following series.
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Limits: Compute each of the following limits in two ways: first using ’H Rule and second
using series.
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Sequence Limits: Use Series to show that
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Integrals: Use Series to compute
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Derivations of MacLaurin Series: Solving for +C' is needed if using Integration

60. Prove the MacLaurin Series formula for arctan x.

61. Use two different methods to Prove the MacLaurin Series formula for In(1 + z).
62. Use two different methods to Prove the MacLaurin Series formula for cosz.

63. Use three different methods to Prove the MacLaurin Series formula for sin z.

64. Use two different methods to Prove the MacLaurin Series formula for In(3 + z).



