Math 12 Midterm Exam #3 Compact Version April 25, 2012

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need *not* simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, or $e^{3\ln 3}$ should be simplified.
- ullet Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)
- 1. [15 Points] Find the Interval and Radius of Convergence for the following power series. Analyze carefully and with full justification.

$$\sum_{n=1}^{\infty} \frac{(-1)^n (3x+2)^n}{n \ 5^{n+1}}$$

- 2. [10 Points] Find the Taylor polynomial of degree 3 for $f(x) = \cosh x$ centered at $a = \ln 2$.
- **3.** [20 Points] Find the **MacLaurin series** representation for each of the following functions. **State** the Radius of Convergence for each series. Your answer should be in sigma notation $\sum_{n=0}^{\infty}$.
- (a) $f(x) = x^2 e^{-5x}$

(b) $f(x) = x^7 \sin(x^3)$

(c) $f(x) = x \arctan(7x)$

- (d) $f(x) = \frac{1}{(1-x)^2}$
- **4.** [15 Points] Use Power Series to **estimate** $\int_0^1 x^3 \ln(1+x^2) dx$ with error less than $\frac{1}{10}$. Justify in words that your error is indeed less than $\frac{1}{10}$.
- $\mathbf{5.}$ [20 Points] Find the \mathbf{sum} for each of the following series.
- (a) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{9^n (2n)!}$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n 9^n}{5^n n!}$

(c) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{4^{2n} (2n+1)!}$

(d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots$

- **6.** [20 Points] Volumes of Revolution
- (a) Consider the region bounded by $y = e^{2x}$, x = 0, and y = 3. Rotate this region about the horizontal line y = -1. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Washer Method. Sketch the solid, along with one of the approximating washers.
- (b) Consider the region bounded by $y = e^x$, $y = \ln x$, x = 1 and x = 5. Rotate this region about the vertical line x = 7. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.
- (c) Consider the region bounded by $y = \arctan x$, y = 0, x = 0 and x = 1. Rotate this region about the y-axis. COMPUTE the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.

OPTIONAL BONUS

OPTIONAL BONUS #1 Compute the sum $\sum_{n=0}^{\infty} \frac{n}{5^n}$

OPTIONAL BONUS #2 Compute the sum $\sum_{n=0}^{\infty} \frac{n^3}{2^n n!}$

OPTIONAL BONUS #3 Compute the MacLaurin Series for $f(x) = \frac{x}{(1-2x)^3}$ and state its Radius of Convergence.