Math 121 Midterm Exam #1 December 2, 2016

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{3\ln 3}$, $\arctan\sqrt{3}$ or $\cosh(\ln 3)$ should be simplified.
- \bullet Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)
- 1. [15 Points] Find the Interval and Radius of Convergence for the following power series. Analyze carefully and with full justification.

$$\sum_{n=1}^{\infty} \frac{(-1)^n (3x+4)^n}{(n+1)^2 8^n}$$

2. [12 Points] Find the **MacLaurin series** representation for each of the following functions. **State** the Radius of Convergence for each series. Your answer should be in sigma notation $\sum_{n=0}^{\infty}$. Simplify.

(a)
$$f(x) = x^3 \ln(1+2x)$$
 (b) $f(x) = x^2 - \frac{x^6}{6} - \sin(x^2)$

3. [12 Points] Use the MacLaurin Series representation for $f(x) = x^4 e^{-x^3}$ to

Estimate
$$\int_0^1 x^4 e^{-x^3} dx$$
 with error less than $\frac{1}{10}$.

Justify in words that your error is indeed less than $\frac{1}{10}$.

- **4.** [8 Points] Estimate $\arctan\left(\frac{1}{2}\right)$ with error less than $\frac{1}{100}$. Justify in words that your error is indeed less than $\frac{1}{100}$.
- **5.** [20 Points] Find the **sum** for each of the following series.

(a)
$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots$$
 (b) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{36^n (2n+1)!}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^n (\ln 27)^n}{3^{n+1} n!}$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(\sqrt{6})^{4n} (2n)!}$$
 (e)
$$\sum_{n=0}^{\infty} \frac{1}{e^n}$$
 (f)
$$1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\dots$$

6. [21 Points] Volumes of Revolution

- (a) Consider the region bounded by $y = \arctan x$, $y = \frac{\pi}{4}$, and x = 0. Rotate this region about the horizontal line y = -1. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Washer Method. Sketch the solid, along with one of the approximating washers.
- (b) Consider the region bounded by $y = \ln x$, y = 2, and x = 10. Rotate this region about the vertical line x = -1. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.
- (c) Consider the region bounded by $y=2+e^x$, $y=\cos x$, x=0 and $x=\frac{\pi}{2}$. Rotate this region about the vertical line x=5. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.

7. [12 Points] Parametric Equations

Consider the Parametric Curve given by $x = e^t + \frac{1}{1 + e^t}$ and $y = 2\ln(1 + e^t)$.

COMPUTE the **Arclength** of this parametric curve for $0 \le t \le \ln 3$.

OPTIONAL BONUS

OPTIONAL BONUS #1

- (a) Compute $\sum_{n=0}^{\infty} \frac{n^2 (\ln 3)^n}{n!}$
- (b) Compute $1 \frac{1}{e} \frac{e^2}{2!} + \frac{1}{e^3 \cdot 3!} + \frac{e^4}{4!} \frac{1}{e^5 \cdot 5!} \frac{e^6}{6!} + \dots$
- (c) Compute the MacLaurin Series for $f(x) = \frac{x}{(1-2x)^3}$ and state its Radius of Convergence.

 2