- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need *not* simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{3\ln 3}$, or $\cosh(\ln 3)$ should be simplified.
- \bullet Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)
- 1. [15 Points] Find the **Interval** and **Radius** of Convergence for the following power series $\sum_{n=1}^{\infty} \frac{(-1)^n (2x+3)^n}{(n+1) \ 4^n}$. Analyze carefully and with full justification.
- **2.** [10 Points] Find the **MacLaurin series** representation for each of the following functions. **State** the Radius of Convergence for each series. Your answer should be in sigma notation $\sum_{n=0}^{\infty}$.
- (a) $f(x) = \frac{x}{1+7x}$ (b) $f(x) = x^7 \sin(3x)$
- **3.** [5 Points]
- (a) Write the MacLaurin Series representation for $f(x) = xe^{-x^2}$. Then write out at least the first 6 terms.
- (b) Write out the definition of the MacLaurin Series for **any** function f(x). Then write out at least the first 6 terms.
- (c) Use the formulas in part (a) and part (b) together to determine the **tenth** derivative of $f(x) = xe^{-x^2}$ evaluated at x = 0. That is, compute $f^{(10)}(0)$.

HINT: Do not compute out those derivatives manually. Match the formulas from (a) and (b) and examine the coefficients.

- **4.** [15 Points]
- (a) Write the MacLaurin Series representation for $f(x) = x \arctan(x^2)$.
- (b) Use the MacLaurin Series representation for $f(x) = x \arctan(x^2)$ from part (a) to

Estimate
$$\int_0^1 x \arctan(x^2) dx$$
 with error less than $\frac{1}{10}$.

Justify in words that your error is indeed less than $\frac{1}{10}$.

5. [15 Points] Find the sum for each of the following series.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{6^{2n+1} (2n+1)!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\ln 7)^n}{n!} = 1 - \ln 7 + \frac{(\ln 7)^2}{2!} - \frac{(\ln 7)^3}{3!} + \frac{(\ln 7)^4}{4!} + \dots$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(36)^n (2n)!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$

6. [20 Points] Volumes of Revolution

- (a) Consider the region bounded by $y = e^x + 2$, $y = \sin x$, x = 0, and $x = \pi$. Rotate this region about the horizontal line y = -1. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Washer Method. Sketch the solid, along with one of the approximating washers.
- (b) Consider the region bounded by $y = x + \frac{\pi}{2}$, $y = \arctan x$, x = 0 and x = 1. Rotate this region about the vertical line x = 1. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.
- (c) Consider the region bounded by $y = \ln x$, y = 2, x = 1 and x = e. Rotate this region about the y-axis. COMPUTE the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.
- 7. [20 Points] Consider the Parametric Curve represented by x = 3 2t and $y = e^t + e^{-t}$.
- (a) Compute the arclength of this parametric curve for $0 \le t \le 1$.
- (b) Set-up, **BUT DO NOT EVALUATE!!**, the definite integral representing the **surface area** obtained by rotating this curve about the x-axis, for $0 \le t \le 1$.

OPTIONAL BONUS

OPTIONAL BONUS #1 Compute the sum $\sum_{n=0}^{\infty} \frac{n^3}{2^n}$