Name:_		

Amherst College

DEPARTMENT OF MATHEMATICS

Math 121

Midterm Exam #3

December 2, 2011

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need *not* simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{3\ln 3}$, or $\cosh(\ln 3)$ should be simplified.
- Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)
- If you actually read these directions, draw a smiley face at the bottom of this page!

Problem	Score	Possible Points
1		12
2		8
3		12
4		12
5		16
6		20
7		20
Total		100

1. [12 Points] Find the Interval and Radius of Convergence for the following power series. Analyze carefully and with full justification.

$$\sum_{n=1}^{\infty} \frac{(-1)^n (3x+2)^n}{n \ 5^{n+1}}$$

2. [8 Points] Find the **Taylor polynomial of degree 3** for $f(x) = \cosh x$ centered at $a = \ln 2$.

3. [12 Points] Find the **MacLaurin series** representation for each of the following functions. State the Radius of Convergence for each series. Your answer should be in sigma notation $\sum_{n=0}^{\infty}$.

(a)
$$f(x) = x^2 e^{-5x}$$

(b)
$$f(x) = x^7 \sin(x^3)$$

(c)
$$f(x) = \frac{1}{(1-x)^2}$$

4. [12 Points] Use Power Series to estimate $\int_0^1 x^3 \ln(1+x^2) dx$ with error less than $\frac{1}{10}$. Justify in words that your error is indeed less than $\frac{1}{10}$.

5. [16 Points] Find the sum for each of the following series.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\pi^2)^n}{9^n (2n)!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 9^n}{5^n n!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{4^{2n} (2n+1)!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots$$

- 6. [20 Points] Volumes of Revolution
- (a) Consider the region bounded by $y=e^{2x}$, x=0, and y=3. Rotate this region about the horizontal line y=-1. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Washer Method. Sketch the solid, along with one of the approximating washers.

(b) Consider the region bounded by $y = e^x$, $y = \ln x$, x = 1 and x = 5. Rotate this region about the vertical line x = 7. Set-up, **BUT DO NOT EVALUATE!!**, the integral to compute the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.

- 6. (Continued) Volumes of Revolution
- (c) Consider the region bounded by $y = \arctan x$, y = 0, x = 0 and x = 1. Rotate this region about the y-axis. **COMPUTE** the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.

- 7. [20 Points] Consider the Parametric Curve represented by $x=t-e^t$ and $y=1-4e^{\frac{t}{2}}$.
- (a) Compute $\frac{dy}{dx}$ for this curve when $t = \ln 4$.

(b) Compute the $\mbox{ arclength}$ of this parametric curve for $0 \leq t \leq 1.$

(c) Set-up, **BUT DO NOT EVALUATE!!** the definite integral representing the **surface area** obtained by rotating this curve about the x-axis, for $0 \le t \le 1$.

OPTIONAL BONUS

Do not attempt these unless you are completely done with the rest of the exam.

OPTIONAL BONUS #1 Compute the sum $\sum_{n=0}^{\infty} \frac{n}{5^n}$

OPTIONAL BONUS #2 Compute the sum $\sum_{n=0}^{\infty} \frac{n^3}{2^n n!}$

OPTIONAL BONUS #3 Compute the MacLaurin Series for $f(x) = \frac{x}{(1-2x)^3}$ and state its Radius of Convergence.