Name:

Ambherst College
DEPARTMENT OF MATHEMATICS
Math 121
Midterm Exam #2
March 25, 2016

e This is a closed-book examination. No books, notes, calculators, cell phones, communication
devices of any sort, or other aids are permitted. Do not access any webpages during this exam.

e Numerical answers such as sin (%), 42, em4 In(e”), €33 sinh(In3), or arctan(y/3) should

be simplified.

e Please show all of your work and justify all of your answers. (You may use the backs of pages for
additional work space.)

Problem Score Possible Points
1 35
2 15
3 10
4 15
5 25
Total 100




1. [35 Points] Compute the following integral, or else show that it diverges.

V3 .3 1
(a) / T
1 X +1



1. (Continued) Compute each of the following integrals or show that it diverges.
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1. (Continued) Compute the following integral, or else show that it diverges.

(d) /1715_95 da
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2. [15 Points]

(a) Determine and state whether the following sequence converges or diverges. If it converges,
compute its limit. Justify your answer. Do not just put down a number.

{ (e ()}

(b) Determine and state whether the following series converges or diverges. Justify your answer.
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3. [10 Points]  Find the sum of the following series (which does converge).




4. [15 Points] Determine whether each of the following series converges or diverges. Name
any convergence test(s) you use, and justify all of your work.
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9. [25 Points] In each case determine whether the given series is absolutely convergent,
conditionally convergent, or diverges. Name any convergence test(s) you use, and justify all
of your work.
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5. (Continued) Determine whether the given series is absolutely convergent, conditionally
convergent, or diverges. Name any convergence test(s) you use, and justify all of your work.
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OPTIONAL BONUS

Do not attempt this unless you are completely done with the rest of the exam.
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OPTIONAL BONUS #1 We have seen that the harmonic series is a diverent series

oo
1
whose terms do indeed approach zero. Show that the following series g In <1 + ) is another
n
n=1
series with this property.

OPTIONAL BONUS #2 Compute the following integral /ln(m2 —x+2) dx.



