

Math 121 Exam 1 February 23, 2024

• This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.

• Numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $\arctan(\sqrt{3})$, $e^{\ln 4}$, $\ln(e^7)$, or $e^{3\ln 3}$ should be simplified.

 \bullet Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)

1. Limits [32 Points total] Evaluate each of the following. Please justify/simplify.

(a) Show that $\lim_{x \to 0} \frac{\ln(1+5x) - 5x}{\arcsin(3x) + e^{-3x} - 1} = \boxed{-\frac{25}{9}}$

(b) Show that
$$\lim_{x\to 0^+} x^3 \ln x = \boxed{0}$$

(c) Show that
$$\lim_{x \to \infty} \left(1 - \arctan\left(\frac{3}{x^4}\right) \right)^{x^4} = \boxed{e^{-3}}$$

Integrals [36 Points total] Compute each of the following Definite Integrals. Justify.

2. Show that
$$\int_{-3}^{3} \sqrt{9 - x^2} \, dx = \boxed{\frac{9\pi}{2}}$$

3. Show that
$$\int_0^{\ln\sqrt{3}} \frac{e^{2x}}{3+e^{4x}} \, dx = \boxed{\frac{\pi}{12\sqrt{3}}}$$

4. Show that
$$\int_{1}^{e} x^{3} \ln x \, dx = \boxed{\frac{1+3e^{4}}{16}}$$

More Integrals [32 Points total] Compute each of the following Indefinite Integrals. Justify.

5. Compute $\int x^2 \arcsin x \, dx$ 6. Compute $\int \frac{x}{(4+x^2)^{\frac{7}{2}}} \, dx$ using a Trig Substitution Hint: $\tan \theta = \frac{\sin \theta}{\cos \theta}$