- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need *not* simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $\sinh(\ln 3)$, $e^{\ln 4}$, $\ln(e^7)$, or $e^{3\ln 3}$ should be simplified.
- \bullet Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)
- **1.** [10 Points]
- (a) Let $y = \arcsin x$. Use implicit differentiation to **PROVE** that $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$.
- (b) From part (a) we now know that $\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$. You may use this fact to **PROVE** that

$$\int \frac{1}{\sqrt{9-x^2}} dx = \arcsin\left(\frac{x}{3}\right) + C \quad \longleftarrow \text{ Prove this.}$$

- **2.** [30 Points] Evaluate each of the following **limits**. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.
- (a) $\lim_{x\to 0} \frac{5xe^x \arctan(5x)}{\sinh x + \ln(1-x)}$
- (b) $\lim_{x \to \infty} \left(e^{\frac{1}{x}} \frac{4}{x} \right)^x$
- (c) $\lim_{x \to \infty} (\ln x)^{\frac{3}{x}}$
- **3.** [30 Points] Compute the following **definite integral**. Please simplify your answer.
- (a) $\int_0^{\ln 7} x \sinh x \, dx$
- (b) $\int_3^{3\sqrt{3}} \frac{1}{\sqrt{36-x^2}} + \frac{1}{9+x^2} dx$
- (c) $\int_1^e \frac{1}{x[1+(\ln x)^2]} dx$

4. [30 Points] Compute the following indefinite integral.

- (a) $\int x \arcsin x \ dx$
- (b) $\int \frac{e^x}{(e^{2x}+4)^{\frac{7}{2}}} dx$
- (c) $\int \ln(x^2 + 1) \ dx$

OPTIONAL BONUS

OPTIONAL BONUS #1 Compute the following indefinite integral.

$$1. \int e^{\sqrt{1+\sqrt{x}}} dx$$

 $\begin{tabular}{ll} \bf OPTIONAL\ BONUS\ \#2 & Compute the following\ indefinite\ integral. \end{tabular}$

$$2. \int \frac{\ln(x-1)}{\sqrt{x}} \ dx$$