Name:_		

Amherst College DEPARTMENT OF MATHEMATICS

Math 121

Midterm Exam #1 September 30, 2011

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need not simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, or $e^{3\ln 3}$ should be simplified.
- Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)

Problem	Score	Possible Points	
1		30	
2		30	
3		40	
Total		100	

1. [30 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x\to 0} \frac{1-\cosh(2x)}{x+\ln(1-x)}$$

(b) $\lim_{x \to \infty} \frac{\arctan x}{\sinh\left(\frac{1}{x}\right)}$

1. (Continued) Evaluate the following limit. Please justify your answer. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(c)
$$\lim_{x \to \infty} \left(x^2 + 1 \right)^{\frac{1}{\ln x}}$$

(d)
$$\lim_{x \to \infty} \left(e^{\frac{1}{x}} - \frac{4}{x} \right)^x$$

2. [30 Points] Compute each of the following definite integrals. Please simplify your answer.

(a)
$$\int_{1}^{\sqrt{3}} \frac{x+1}{\sqrt{4-x^2}} dx$$

(b)
$$\int_0^{\ln 7} x \sinh x \, dx$$

2. (Continued) Compute the following definite integral. Please simplify your answer.

$$\text{(c)} \int_0^1 \frac{y^2}{e^{2y}} \ dy$$

- **3.** [40 Points] Compute each of the following **indefinite integrals**.
- (a) $\int \sec x + \tan x \ dx$

(b) $\int x \arcsin x \, dx$

 ${\bf 3.} \ \ ({\rm Continued}) \quad {\rm Compute} \ {\rm the} \ {\rm following} \ {\bf indefinite} \ {\bf integral}.$

(c)
$$\int \frac{1}{(x^2+4)^{\frac{5}{2}}} dx$$

 ${\bf 3.} \ \ ({\rm Continued}) \quad {\rm Compute} \ {\rm the} \ {\rm following} \ {\bf indefinite} \ {\bf integral}.$

(d)
$$\int \ln(x^2 + 1) \ dx$$

OPTIONAL BONUS

OPTIONAL BONUS #1 Compute the following indefinite integral.

$$1. \int \frac{1}{1 - \sin x} \, dx$$

OPTIONAL BONUS #2 Compute the following indefinite integral.

$$2. \int e^{\sqrt{1+\sqrt{x}}} dx$$

 $\mathbf{OPTIONAL} \ \mathbf{BONUS} \ \#3 \quad \mathbf{Compute} \ \mathbf{the} \ \mathbf{following} \ \mathbf{indefinite} \ \mathbf{integral}.$

$$3. \int \frac{\ln(x-1)}{\sqrt{x}} \ dx$$

OPTIONAL BONUS #4 Compute the following indefinite integral.

4.
$$\int x \cos^6 x \ dx$$