Math 121 Final Exam May 15, 2013

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need not simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{-\ln 5}$, $e^{3\ln 3}$, $\arctan(\sqrt{3})$, or $\cosh(\ln 3)$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)
- 1. [15 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to 0} \frac{3xe^x - \arctan(3x)}{x + \ln(1-x)}$$

(b)
$$\lim_{x \to \infty} \left(\cosh\left(\frac{1}{x}\right) - \frac{5}{x} \right)^x$$

2. [30 Points] Evaluate each of the following integrals.

(a)
$$\int \frac{e^x}{(e^{2x} + 4)^{\frac{5}{2}}} dx$$
 Hint: $e^{2x} = (e^x)^2$ (b) $\int x \arctan x \, dx$

(b)
$$\int x \arctan x \, dx$$

(c)
$$\int x \arcsin x \, dx$$

(d)
$$\int \frac{x^4 + 5x^2 - x + 3}{x^3 + 3x} dx$$

For each of the following improper integrals, determine whether it converges or diverges. If it converges, find its value.

(a)
$$\int_{6}^{\infty} \frac{1}{x^2 - 10x + 28} dx$$

(b)
$$\int_0^9 \frac{1}{(x-1)^{\frac{4}{3}}} dx$$

Find the **sum** of each of the following series (which do converge):

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n-1}}{4^{2n+1}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ 3^{2n-1}}{4^{2n+1}}$$
 (b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \ 2^n}{n!} = 1 - 2 + \frac{4}{2!} - \frac{8}{3!} + \frac{16}{4!} - \dots$$
 (c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{9^n (2n)!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{9^n (2n)!}$$

5. [30 Points] In each case determine whether the given series is absolutely convergent, conditionally convergent, or diverges. Justify your answers.

1

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+7}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n+3}{\ln(n+3)}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3+n^2}{n^7+4}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\arctan(6n)}{6^n} + \frac{6}{n^6}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3+n^2}{n^7+4}$$
 (e) $\sum_{n=1}^{\infty} \frac{\arctan(6n)}{6^n} + \frac{6}{n^6}$ (f) $\sum_{n=1}^{\infty} \frac{(-1)^n n^n (256)^n (n!)^3}{\pi^n (4n)!}$

6. [15 Points] Find the **Interval** and **Radius** of Convergence for the following power series $\sum_{n=0}^{\infty} \frac{(-1)^n (5x+1)^n}{(n^2+1) 9^n}$. Analyze carefully and with full justification.

7. [10 Points] (a) Write the MacLaurin Series for $f(x) = x^5 \sin(x^3)$.

(b) Use this series to determine the **eighth** and **ninth** derivatives of $f(x) = x^5 \sin(x^3)$ at x = 0.

(Hint: Do not compute out those derivatives manually.)

(**Hint:** Write out the definition of the MacLaurin Series for any f(x).)

- **8.** [15 Points] Please analyze with detail and justify carefully. (a) Write the **MacLaurin series** representation for $f(x) = xe^{-x^7}$. Your answer should be in sigma notation $\sum_{n=0}^{\infty}$.
- (b) Use the MacLaurin series representation for $f(x) = xe^{-x^7}$ from Part(a) to

Estimate
$$\int_0^1 xe^{-x^7} dx$$
 with error less than $\frac{1}{10}$.

Justify in words that your error is indeed less than $\frac{1}{10}$.

- **9.** [15 Points] (a) Consider the region bounded by $y = \arcsin x$, $y = \frac{\pi}{2}$, x = 0 and x = 1. Rotate the region about the line x = 5. Set-Up but DO NOT EVALUATE the integral representing the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating cylindrical shells.
- (b) Consider the region bounded by $y = e^x$, $y = \ln x$, x = 1 and x = 2. Rotate the region about the y-axis. **COMPUTE** the **volume** of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating cylindrical shells.
- 10. [20 Points] Parametric Curves
- (a) Consider the Parametric Curve represented by $x = \frac{t^3}{3} \frac{e^{2t}}{2}$ and $y = 2te^t 2e^t$. COMPUTE the arclength of this parametric curve for $0 \le t \le 1$.
- (b) Consider the Parametric Curve represented by $x = \cos^3 t$ and $y = \sin^3 t$.

 COMPUTE the surface area obtained by rotating this curve about the y-axis, for $0 \le t \le \frac{\pi}{2}$.
- 11. [15 Points] Compute the **area** bounded outside the polar curve $r = 2 + 2\cos\theta$ and inside the polar curve $r = 6\cos\theta$. Sketch the Polar curves.