

Math 121 Final December 16, 2022

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{-\ln 5}$, $e^{3\ln 3}$, or $\arctan(\sqrt{3})$ should be simplified.
- \bullet Please *show* all of your work and *justify* all of your answers. (You may use the backs of pages for additional work space.)
- **1.** [15 Points] (a) Use Series to show that $\lim_{x\to 0} \frac{\ln(1+x) \arctan x}{1 3x e^{-3x}} = \boxed{\frac{1}{9}}$
- (b) Compute $\lim_{x\to 0} \frac{\ln(1+x) \arctan x}{1-3x-e^{-3x}}$ again using L'Hôpital's Rule.
- 2. [20 Points] Compute the following integrals. Simplify.
- (a) $\int \frac{x^3}{(x^2+4)^{\frac{7}{2}}} dx$ Use Trig Sub and Hint: $\tan \theta = \frac{\sin \theta}{\cos \theta}$ (b) $\int (x+1) \arcsin x \, dx$
- **3.** [30 Points] For each of the following **Improper** integrals, determine whether it Converges or Diverges. If it converges, find its value. Simplify.

(a)
$$\int_0^e x^2 \cdot \ln(x^2) dx$$
 (b) $\int_0^{e^4} \frac{4}{x \left[16 + (\ln x)^2\right]} dx$ (c) $\int_{-4}^{-3} \frac{8 - x}{x^2 + 2x - 8} dx$

4. [26 Points] Find the Sum of each of the following series (which do converge). Simplify.

(a)
$$-1 + \frac{2}{3} - \frac{2}{4} + \frac{2}{5} - \dots$$
 (b) $\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \dots$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^n (\ln 9)^n}{3! \ 2^n \ n!}$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4! \pi^{2n}}{2^{4n} (2n+1)!}$$
 (e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1) 3^n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1) (\sqrt{3})^{2n}}$$

(f)
$$1+1-\frac{\pi^2}{2!}+\frac{\pi^4}{4!}-\frac{\pi^6}{6!}+\frac{\pi^8}{8!}-\dots$$
 (g) Show that $\sum_{n=0}^{\infty}\frac{(-4)^n-2}{5^n}=\boxed{-\frac{35}{18}}$

5. [20 Points] Find the Interval and Radius of Convergence for each of the following.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (4x+1)^n}{(4n+1)^2 7^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)! (\ln n) (x-7)^n}{n^n}$

6. [25 Points] Determine whether each series Converges or Diverges. Name any convergence test(s) you use, justify all of your work.

(a)
$$\sum_{n=2}^{\infty} \left(1 - \frac{7}{n^4}\right)^{n^4}$$

(a)
$$\sum_{n=2}^{\infty} \left(1 - \frac{7}{n^4}\right)^{n^4}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n \sin^2 n}{n^4 + 7}$ Use the Absolute Convergence Test

(c)
$$\sum_{n=5}^{\infty} \frac{1}{n^2 - 4n + 7}$$
 Use the Integral Test (no pre-conditions check)

7. [22 Points] Determine whether each given series is Absolutely Convergent or Conditionally Convergent. Name any convergence test(s) you use, justify all of your work.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^4 + 7}{n^7 + 4}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n + 7}$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{4n+7}$$

- **8.** [18 Points] Answers in Sigma $\sum_{n=0}^{\infty}$ notation. **STATE** the Radius of Convergence for each.
- (a) Let $f(x) = 3x^2 \cos(x^3)$. Find its Series in two ways.
- (*) First, Replace $f(x) = 3x^2 \cos(x^3)$ directly with a Series.
- (**) Second, Replace $\sin(x^3)$ with a Series and then Differentiate to find a series for f(x) using the fact that $3x^2 \cos(x^3) = \frac{d}{dr} \sin(x^3)$.

Show that they are equal Series using the two different methods.

- (b) Find the MacLaurin Series Representation for $\ln(9+x^2)$. Hint: $\ln(9+x^2) = \int \frac{2x}{9+x^2} dx$. Yes, solve for C
- (c) Show that the MacLaurin Series for $\frac{1}{2} \left(e^x e^{-x} \right)$ equals $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$ Justify.
- **9.** [24 Points] For **each** of the following problems, do the following **THREE** things:
- 1. **Sketch** the Polar curve(s) and **Shade** the described bounded region.
- 2. Set-Up but **DO NOT EVALUATE** an Integral representing the area of the described bounded region.
- 3. Set-Up but **DO NOT EVALUATE** another **slightly different** Integral representing the same area of the described bounded region.
- (a) The **Area** bounded outside the polar curve $r = 2 + 2\sin\theta$ and inside $r = 6\sin\theta$.
- (b) The **Area** that lies inside both of the curves $r = 2 + 2\cos\theta$ and $r = 2 2\cos\theta$.
- (c) The **Area** bounded inside both of the polar curves $r = 2\cos\theta$ and $r = 2\sin\theta$.
- (d) The **Area** bounded outside $r = 1 \cos \theta$ and inside $r = -3 \cos \theta$.