Math 121 Final Exam December 21, 2011

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need not simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{-\ln 5}$, $e^{3\ln 3}$, or $\sinh(\ln 3)$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)
- 1. [15 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to \ln 3} \frac{1}{e^x - 3} - \frac{1}{3x - \ln 27}$$

(b)
$$\lim_{x \to \infty} \left(\cosh\left(\frac{1}{x}\right) - \frac{5}{x} \right)^x$$

2. [30 Points] Evaluate each of the following integrals.

(a)
$$\int \frac{1}{(x^2+4)^{\frac{7}{2}}} dx$$

(b)
$$\int x \arcsin x \, dx$$

(a)
$$\int \frac{1}{(x^2+4)^{\frac{7}{2}}} dx$$
 (b) $\int x \arcsin x \, dx$ (c) $\int \frac{x^4+x^3+4x^2+5x+4}{x^3+4x} \, dx$

For each of the following **improper integrals**, determine whether it converges or diverges. If it converges, find its value.

(a)
$$\int_{3}^{\infty} \frac{1}{x^2 - 4x + 7} dx$$

(b)
$$\int_0^1 \frac{e^{\frac{1}{x}}}{x^2} dx$$

Find the **sum** of each of the following series (which do converge):

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^{n+2}}{2^{4n-1}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3^{n+2}}{2^{4n-1}}$$
 (b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots$$
 (c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{9^n (2n)!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{9^n (2n)!}$$

In each case determine whether the given series is absolutely convergent, conditionally convergent, or diverges. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n^2}$$

1

(c)
$$\sum_{n=1}^{\infty} \frac{1}{5^n + 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (9+n^2)}{n^7+1}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \pi^n (3n)!}{n^n (27)^n (n!)^2}$$

6. [10 Points] Find the Interval and Radius of Convergence for the power series

$$\sum_{n=0}^{\infty} \frac{(-1)^n (4x+1)^n}{(n^2+1) 7^n}$$
. Analyze carefully and with full justification.

- 7. [5 Points] Write the MacLaurin Series for $f(x) = x^5 \sin(x^3)$. Use this series to determine the **eighth** and **ninth** derivatives of f(x) at x = 0. (Do not compute out those derivatives manually.)
- **8.** [10 Points] Please analyze with detail and justify carefully.
- (a) Find the MacLaurin series representation for $f(x) = xe^{-x^7}$. Your answer should be in sigma notation $\sum_{x=0}^{\infty}$.
- (b) Use the MacLaurin series representation for $f(x) = xe^{-x^7}$ from Part(a) to

Estimate
$$\int_0^1 xe^{-x^7} dx$$
 with error less than $\frac{1}{10}$.

Justify in words that your error is indeed less than $\frac{1}{10}$.

- **9.** [15 Points] Consider the region bounded by y = 1, $y = \ln x$, x = 1. Rotate the region about the line x = -1. Compute the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating cylindrical shells.
- 10. [15 Points] Parametric Curves
- (a) Consider the Parametric Curve represented by $x = \frac{t^3}{3} \frac{e^{2t}}{2}$ and $y = 2te^t 2e^t$. Compute the **arclength** of this parametric curve for $0 \le t \le 1$.
- (b) Consider the Parametric Curve represented by $x = \cos^3 t$ and $y = \sin^3 t$. Compute the surface area obtained by rotating this curve about the y-axis, for $0 \le t \le \frac{\pi}{2}$.
- 11. [15 Points] Compute the area bounded outside the polar curve $r = 2 + 2\cos\theta$ and inside the polar curve $r = 6\cos\theta$. Sketch the Polar curves.
- 12. [10 Points] Find the general solution for each of the following differential equations.

(a)
$$\frac{dy}{dx} = \frac{e^y}{\sqrt{1-x^2}}$$
 (b) $x \frac{dy}{dx} = x^7 \cosh x + 4y$