Math 121

Self-Assessment Practice Worksheet #8 Answer Key

Note: This Answer key may contain some short-hand notations, using A.S for the Absolute
Series and O.S. for the Original Series, and maybe some shorthand labels for each of the

Convergence Tests.

Determine whether the given series is Absolutely Convergent, Conditionally Conver-
gent, or Divergent. Name any Convergence Test(s) you use, and justify all of your work.
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Therefore, the Original Series ’Diverges by the Ratio Test
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Therefore, the Original Series ’Converges Absolutely by the Ratio Test

*L’H Rule on the log piece
1 1)~ 1 N, 1 .
i DD e DS BT, 2 S
n—0o0 Inn T—00 Inz g0 z—oo 4+ 1 300




>y 4

— nd+3
> n-+>5
—1)"

1st

AS.

Original Series
Absolutely
Convergent

by Definition

2_,::9+3 Znﬁ Zn_

Conv. p-Series

p=8>1
n+95 ()
n9+3 n? +5n° (5
e L e e
s

1;5
= lim o= 1 Finite and Non-zero
n—oo
1t %

’A.S. Converges‘ by Limit Comparison Test

|




/Qnd
n
1. b, = >0
n? 46
. - on ()
2 fim o =l
0
1
:7}1—{20 +£:0

3. Terms Decreasing
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Therefore, the Original Series ’Converges Absolutely by the Ratio Test

8. Use Two Different methods to show that E 16— Diverges.
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Note: can also finish the L'H Limit with algebra
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9. Use the Absolute Convergence Test to show that Z (=1) Converges.
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Check the statement of the Absolute Convergence Test: Given a series, if the Absolute series
converges, then the Original Series Converges.



° ! |
10. Use the Series Z n to show that lim o 0.
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As a result we can conclude that the TERMS of the series shoot to 0 as n explodes to infinity.
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That is, lim — = 0 because otherwise, by contradiction, IF the limit of the terms was
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not equal to 0, then the series would diverge by the n'* Term Divergence Test, which would

contradict our Ratio Test convergence work here.



