
Math 121 Self-Assessment Practice Worksheet #8 Answer Key

Note: This Answer key may contain some short-hand notations, using A.S for the Absolute
Series and O.S. for the Original Series, and maybe some shorthand labels for each of the
Convergence Tests.

Determine whether the given series is Absolutely Convergent, Conditionally Conver-
gent, or Divergent. Name any Convergence Test(s) you use, and justify all of your work.
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Therefore, the Original Series Converges Absolutely by the Ratio Test
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Check the statement of the Absolute Convergence Test: Given a series, if the Absolute series
converges, then the Original Series Converges.
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As a result we can conclude that the TERMS of the series shoot to 0 as n explodes to infinity.

That is, lim
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not equal to 0, then the series would diverge by the nth Term Divergence Test, which would
contradict our Ratio Test convergence work here.


