Math 121 Self-Assessment Practice Worksheet #10 Answer Key

Find the MacLaurin Series representation for each of the following functions. State the
oo
Radius of Convergence for each series. You answer should be in sigma notation Z .
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Note: Here we will use substiution into out 6 known MacLaurin Series, as well as the known
Radius of Convergence for each series.
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Recall, (finite) constant multiples will not change Convergence.
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Here for sin z.
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Here for e*.
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Here for cosz.
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We will reuse the derived series from 7 above.
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The Radius remains unchanged after Differentiation. So still.
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The Radius remains unchanged after Integration. Here | R = 3 still
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Need |5z < 1= |z| < 5 R= R before Differentiation.
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The Radius remains unchanged after Differentiation. Here | R = R still.
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Here R = oo for €®. The Radius remains unchanged after Integration. So still.
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Here R = oo for €®. The Radius remains unchanged after Integration. So still
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Here R = oo for cosx. The Radius remains unchanged after Integration. So still.
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Here R = oo for sinx. The Radius remains unchanged after Integration. So still.

15. Prove the MacLaurin Series formula for arctan z.

We will derive it using substitution and integration.
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To solve for +C', first expand this equation
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Test x = 0 into both sides of the equation above.

Note that z = 0 is in the Interval of Convergence for this series because it is the Center
point of this power series.



Thatis,0=0—-04+0—-0+0—...+ C = C =0, Substitute above.
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16. Prove the MacLaurin Series formula for In(1 + x).

First option is to derive it using substitution and integration.
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To solve for +C', first expand this equation
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Test x = 0 into both sides of the equation above.

Note that = 0 is in the Interval of Convergence for this series because it is the Center
point of this power series.
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That is,0=0—-04+0—-0+0—...+C = C = 0, Substitute above.
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The second option is to use the Definition (Chart Method)
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MacLaurin Series Formula:
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17. Prove the MacLaurin Series formula for sin .

The First option is to use the Definition (Chart Method)
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MacLaurin Series Formula:
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The Second option is to use Differentiation.
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The Third option is to use Integration.
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To solve for +C, first expand this equation
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Test x = 0 into our equation above.

Note that x = 0 is in the Interval of Convergence for this series because it is the Center
point of this power series.
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