

Natural Logarithm Function $y = \ln x$ Review

In this handout, we will review the Natural Logarithm Function $y = \ln x$ by studying its related

1. Function properties
2. Limits
3. Derivatives
4. Integrals

Start by reviewing the Natural Exponential Function $y = e^x$. It is indeed a one-to-one function, since it is a strictly increasing function (why?).

Recall: The exponential function $\begin{cases} \bullet \text{ NEVER yield the output value } y = 0 \\ \bullet \text{ NEVER yield a negative output value} \end{cases}$
 Graph:

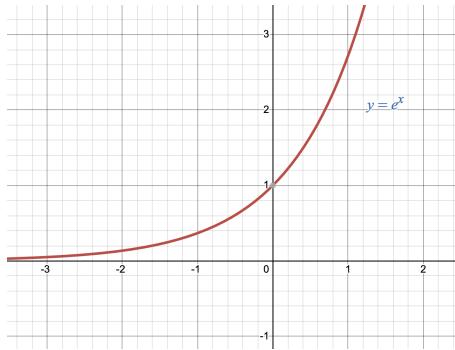


Figure 1: Natural Exponential Function $y = e^x$

Goal: To find an Inverse function for the Natural Exponential function $y = e^x$, that is, find a **reversing** function to solve an equation like $e^{1-3x} = 9$

Note: There are different approaches to exploring the Logarithm, but we will focus on the Inverse of $y = e^x$.

Definition: The Natural Logarithm Function $y = \log_e x$ is defined as the unique y -value such that $e^y = x$.

Think: the logarithm base e is “the exponent y for which e is raised to in order to get back the original input x ”. We can refer to this as a ① – ② – ③ Memory-Aid Rule. That is, ① raised to the ② equals ③

$$\log_{e_{\textcircled{1}}} x_{\textcircled{2}} \stackrel{\curvearrowleft}{=} y_{\textcircled{3}} \iff e^{y_{\textcircled{2}}} = x_{\textcircled{3}}$$

Shorthand: Set $\ln x = \log_e x$

$$\ln x = y \iff e^y = x$$

Recall that the graph of Inverse Functions are mirror symmetrical flips across the line $y = x$.
 Graph:

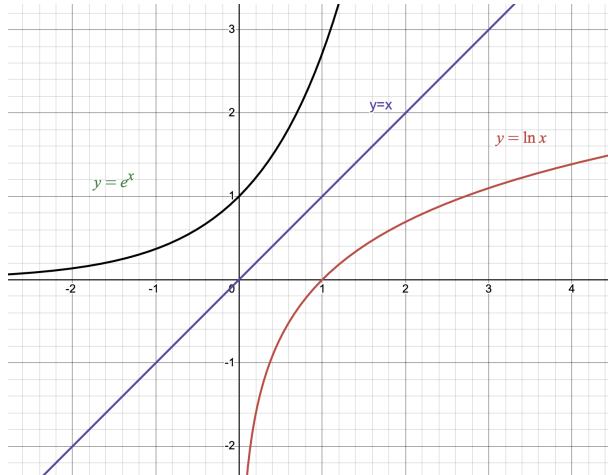


Figure 2: Natural Logarithm Function $y = \ln x$

Let's study some properties of this Natural Logarithm Function $y = \ln x$.

Domain = $(0, \infty) \stackrel{\text{or}}{=} \{x : x > 0\}$

Recall, the *Domain* of a function is the collection of all possible input values which yield a finite output or the values for which the function is defined. Here, $\ln x$ is only defined for strictly positive input values $x > 0$

Recall: The logarithm function $\left\{ \begin{array}{l} \bullet \text{ NEVER have an input value } y = 0 \\ \bullet \text{ NEVER have a negative input value} \end{array} \right.$

Range = $(-\infty, \infty) = \mathbb{R}$

Recall, the *Range* of a function is the collection of all possible output values for a given function. Here $\ln x$ yields all possible output values.

Note: As Inverse Functions it makes sense, from their graphs/definitions, that

$$\boxed{\text{Domain } e^x = \text{Range } \ln x}$$

$$\text{Domain } \ln x = \text{Range } e^x$$

Value(s): $\ln 1 = 0$

We can read this off the graph, but we can also think about the defined value. $\ln 1 = \log_e(1) = ?$ which means in reverse that $e^? = 1$ so $? = 0$. Think: ①–②–③ Memory-Aid.

WARNING: $\ln 0$ is undefined, that is, there is no value y such that $e^y = 0$ since the exponential function is never output 0.

Inverses:

$\ln e^x = x$ for all x
$e^{\ln x} = x$ for $x > 0$

Note: these inverse properties state that the log and exponential invert each other, they literally undo or unwind the other function value. They don't just "cancel".

Example: Simplify $\ln(e^7) = \ln(e^7) = 7$

Example: Simplify $e^{\ln 3} = e^{\ln 3} = 3$

Example: Solve $e^{1-3x} = 9$ by taking logs of both sides, $\ln(e^{1-3x}) = \ln 9$ with $1-3x = \ln 9$
 solved to $x = \frac{(\ln 9) - 1}{-3}$

Example: Solve $\ln(7x+4) = 8$ by applying exponentials to both sides, $e^{\ln(7x+4)} = e^8$ with
 $7x+4 = e^8$ solved to $x = \frac{e^8 - 4}{7}$

Algebra:

Rule	Tip
$\ln a + \ln b = \ln(a \cdot b)$	sum of the logs equals the log of the product warning: NOT $\ln a \cdot \ln b$
$\ln a - \ln b = \ln\left(\frac{a}{b}\right)$	difference of the logs equals the log of the quotient warning: NOT $\frac{\ln a}{\ln b}$
$\ln(a^b) = b \cdot \ln a$	power rule, constant can move down (from) or up (to) the exponent watch the parentheses here

Warning: $\ln(a \pm b)$ and $\frac{\ln a}{\ln b}$ do **not** simplify

Example: Simplify $\ln 2 + \ln 2 + \ln 2 = 3 \ln 2 = \ln(2^3) = \ln 8$

Example: Simplify $\ln 8 - \ln 2 = \ln\left(\frac{8}{2}\right) = \ln 4$

Example: Simplify $e^{-3 \ln 2} = e^{\ln(2^{-3})} = e^{\ln(2^{-3})} = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

Limits: Study Graph

Limit	Tip
$\lim_{x \rightarrow \infty} \ln x = \infty$	as input values grow uncontrollably large, the $\ln x$ output grows to ∞
$\lim_{x \rightarrow 0^+} \ln x = -\infty$	as input shrinks towards 0 from the right, the $\ln x$ shoots to $-\infty$

Example: $\lim_{x \rightarrow 5^+} \ln(x - 5) = \lim_{x \rightarrow 5^+} \ln(\cancel{x} \overset{5+}{\cancel{-}} 5) = -\infty$ The arrows help justify the size argument(s).

Ex: $\lim_{x \rightarrow 8^-} \ln|x - 8| = \lim_{x \rightarrow 8^-} \ln|\cancel{x} \overset{8}{\cancel{-}} 8| = -\infty$

Derivatives:

Derivative	Tip
$\frac{d}{dx} \ln x = \frac{1}{x}$	derivative of log flips the input variable x
$\frac{d}{dx} \ln(u(x)) = \frac{1}{u(x)} \cdot u'(x)$	CHAIN RULE flips the original input chunk... times the derivative of the <i>inside nested</i> function

Recall: the Derivative Chain Rule can be written as

$$\frac{d}{dx} (f(g(x))) = \underbrace{f'(g(x))}_{\substack{\text{deriv of outside} \\ \text{leave inside}}} \cdot \underbrace{g'(x)}_{\text{deriv of inside}}$$

Let us justify why the derivative of $\ln x$ equals $\frac{1}{x}$. That is, Prove: $\boxed{\frac{d}{dx} \ln x = \frac{1}{x}}$

Let $y = \ln x$

Invert $e^y = x$

Differentiate $\frac{d}{dx} (e^y) = \frac{d}{dx} (x)$ yielding $e^y \frac{dy}{dx} = 1$

Finally, Solve $\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{x}$

Example: $\frac{d}{dx} \ln(5 + 8x) = \frac{1}{5 + 8x} \cdot 8 = \frac{8}{1 + 5x}$

Example: $\frac{d}{dx} \sqrt{3 + \ln x} = \frac{1}{2\sqrt{3 + \ln x}} \cdot \left(\frac{1}{x}\right) = \frac{1}{2x\sqrt{3 + \ln x}}$

Example: $\frac{d}{dx} \ln(7 + e^{6x}) = \frac{1}{7 + e^{6x}} \cdot (6e^{6x}) = \frac{6e^{6x}}{7 + e^{6x}}$

Note that the order of composed function matters. The following are not the same.

Example: $\frac{d}{dx} \ln(\sin x) = \frac{1}{\sin x} \cdot \cos x$

Example: $\frac{d}{dx} \sin(\ln x) = \cos(\ln x) \cdot \frac{1}{x}$

Here again, the following are not the same.

Example: $\frac{d}{dx} (\ln x)^3 = 3(\ln x)^2 \frac{1}{x} = \frac{3(\ln x)^2}{x}$

Example: $\frac{d}{dx} \ln(x^3) = \frac{1}{x^3} \cdot (3x^2) = \frac{3}{x}$

Note: there is another way to compute this by simplifying first, then differentiating

Again: $\frac{d}{dx} \ln(x^3) = \frac{d}{dx} 3 \ln(x) = 3 \left(\frac{1}{x}\right) = \frac{3}{x}$

Integrals:

Integral	Tip
$\int \frac{1}{x} dx = \ln x + C$	antiderivative of $\frac{1}{x}$ is the natural log

WARNING: Be careful to use the Absolute Value, to make sure the logarithm does not get handed negative values

IMPORTANT: We now have the function which is the Antiderivative of $\frac{1}{x}$

Recall: the classic Power Rule $\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1$

If we try to apply this Power Rule to $\frac{1}{x}$ then we would get division by 0, undefined.

Helpful **WARNING/INCORRECT**: $\int \frac{1}{x} dx \neq \frac{x^0}{0} + C$

Note: be careful not to punch every integral with a denominator with the logarithm. That is, be careful to **only** use the log antiderivative rule for 1 over x **to the exact power 1**. If there is any other power of x, then we use the Power Rule above.

Helpful **WARNING/INCORRECT**: $\int \frac{1}{\sqrt{x}} dx \neq \ln \sqrt{x} + C$

Instead, using the correct power rule

$$\int \frac{1}{\sqrt{x}} dx \stackrel{\text{prep}}{=} \int x^{-\frac{1}{2}} dx = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + C = 2\sqrt{x} + C$$

We might also be tempted to use the logarithm on the following

Helpful **WARNING/INCORRECT**: $\int \frac{1}{e^{6x}} dx \neq \ln |e^{6x}| + C$

Instead, using the correct k -Rule

$$\int \frac{1}{e^{6x}} dx \stackrel{\text{prep}}{=} \int e^{-6x} dx = -\frac{1}{6}e^{-6x} + C = -\frac{1}{6e^{6x}} + C$$

INDEFINITE Integrals with u -substitution: Always remember to add $+C$ right away, as soon as you compute the Most General Antiderivative. The original variable always reappears when we re-substitute back for u .

Recall: u -substitution is a temporary convenience that hides a nested, meaty chunk of your integrand to first simplify the integral, and second, to match the derivative chunk, all with the overall goal of reversing the Chain Rule.

Example: $\int \frac{e^{3x}}{5 + e^{3x}} dx = \frac{1}{3} \int \frac{1}{u} du = \frac{1}{3} \ln |u| + C = \boxed{\frac{1}{3} \ln |5 + e^{3x}| + C}$

$u = 5 + e^{3x}$
$du = 3e^{3x} dx$
$\frac{1}{3}du = e^{3x}dx$

Example: $\int \tan x dx = \int \frac{\sin x}{\cos x} dx = - \int \frac{1}{u} du = -\ln |u| + C = \boxed{-\ln |\cos x| + C}$

$u = \cos x$
$du = -\sin x dx$
$-du = \sin x dx$

Note: Many different integrals lead to the same u -sub integral leading to Log.

Example: $\int \frac{1}{\sqrt{x}(8+\sqrt{x})} dx = 2 \int \frac{1}{u} du = 2 \ln|u| + C = 2 \ln|8+\sqrt{x}| + C$

$u = 8 + \sqrt{x}$
$du = \frac{1}{2\sqrt{x}} dx$
$2du = \frac{1}{\sqrt{x}} dx$

Example:

$$\int \frac{1}{x(9+\ln x)^3} dx = \int \frac{1}{u^3} du \stackrel{\text{prep}}{=} \int u^{-3} du = \frac{u^{-2}}{-2} + C$$

$$= -\frac{1}{2u^2} + C = \boxed{-\frac{1}{2(9+\ln x)^2} + C}$$

$u = 9 + \ln x$
$du = \frac{1}{x} dx$

IMPORTANT: Notice for u -sub with logarithms, sometimes the \log *acts as* the u and sometimes the denominator *holds* the u with its power exactly 1, antidifferentiating to \log .

QUESTION: How do we know which method of integration to use, u -substitution or Algebra or both? Here are two examples that model the different options. Generally, try u -sub and if the derivative du does not match, then you can try Algebra as a (good) back-up plan. Let us study two similar examples with different integration methods . . .

Example: u -substitution works

$$\int \frac{x^6}{2-x^7} dx = -\frac{1}{7} \int \frac{1}{u} du = -\frac{1}{7} \ln|u| + C = \boxed{-\frac{1}{7} \ln|2-x^7| + C}$$

$u = 2 - x^7$
$du = -7x^6 dx$
$-\frac{1}{7}du = x^6 dx$

Example: Algebra plus log rule works

$$\int \frac{2-x^6}{x^7} dx \stackrel{\text{split}}{=} \int \frac{2}{x^7} - \frac{x^6}{x^7} dx \stackrel{\text{prep}}{=} \int 2x^{-7} - \frac{1}{x} dx$$

$$= 2 \left(\frac{x^{-6}}{-6} \right) - \ln|x| + C = \boxed{-\frac{1}{3x^6} - \ln|x| + C}$$

DEFINITE Integrals: Recall, you must change (or temporarily mark) your Limits of integration. The variables and Limits of Integration change *simultaneously*. Once you *switch* your Limits of Integration to u -values, then the original variable never reappears.

Example:

$$\begin{aligned}\int_2^3 \frac{1}{5-4x} dx &= -\frac{1}{4} \int_{-3}^{-7} \frac{1}{u} du = -\frac{1}{4} \ln|u| \Big|_{-3}^{-7} \\ &= -\frac{1}{4} (\ln|-7| - \ln|-3|) = \boxed{-\frac{1}{4} \ln\left(\frac{7}{3}\right)}\end{aligned}$$

$$\boxed{\begin{array}{l} u = 5 - 4x \\ du = -4 dx \\ -\frac{1}{4}du = dx \end{array}} \quad \text{and} \quad \boxed{\begin{array}{l} x = 2 \Rightarrow u = 5 - 8 = -3 \\ x = 3 \Rightarrow u = 5 - 12 = -7 \end{array}}$$

Note: Without the Absolute Value bars, we would have undefined log values of negative numbers

Example:

$$\begin{aligned}\int_0^{\ln 3} \frac{e^{2x}}{1+e^{2x}} dx &= \frac{1}{2} \int_2^{10} \frac{1}{u} du = \frac{1}{2} \ln|u| \Big|_2^{10} = \frac{1}{2} (\ln|10| - \ln|2|) \\ &= \frac{1}{2} \ln\left(\frac{10}{2}\right) = \boxed{\frac{1}{2} \ln 5 + C}\end{aligned}$$

$$\boxed{\begin{array}{l} u = 1 + e^{2x} \\ du = 2e^{2x}dx \\ \frac{1}{2}du = e^{2x}dx \end{array}} \quad \text{and} \quad \boxed{\begin{array}{l} x = 0 \Rightarrow u = 1 + e^0 = 1 + 1 = 2 \\ x = \ln 3 \Rightarrow u = 1 + e^{2 \ln 3} = 1 + e^{\ln(3^2)} = 10 \end{array}}$$

Example:

$$\begin{aligned}\int_{\ln 3}^{\ln 8} \frac{e^x}{\sqrt{1+e^x}} dx &= \int_4^9 \frac{1}{\sqrt{u}} du = \int_4^9 u^{-\frac{1}{2}} du = \frac{u^{\frac{1}{2}}}{\frac{1}{2}} \Big|_4^9 = 2\sqrt{u} \Big|_4^9 \\ &= 2(\sqrt{9} - \sqrt{4}) = 2(3 - 2) = \boxed{2}\end{aligned}$$

$$\boxed{\begin{array}{l} u = 1 + e^x \\ du = e^x dx \end{array}} \quad \text{and} \quad \boxed{\begin{array}{l} x = \ln 3 \Rightarrow u = 1 + e^{\ln 3} = 1 + 3 = 4 \\ x = \ln 8 \Rightarrow u = 1 + e^{\ln 8} = 1 + 8 = 9 \end{array}}$$