
Natural Logarithm Function y = lnx Review

In this handout, we will review the Natural Logarithm Function y = ln x by studying its
related

1. Function properties
2. Limits
3. Derivatives
4. Integrals

Start by reviewing the Natural Exponential Function y = ex. It is indeed a one-to-one
function, since it is a strictly increasing function (why?).

Recall: The exponential function

{
• NEVER yield the output value y = 0
• NEVER yield a negative output value

Graph:

Figure 1: Natural Exponential Function y = ex

Goal: To find an Inverse function for the Natural Exponential function y = ex, that is, find
a reversing function to solve an equation like e1−3x = 9

Note: There are different approaches to exploring the Logarithm, but we will focus on the
Inverse of y = ex.

Definition: The Natural Logarithm Function y = loge x is defined as the unique
y-value such that ey = x.

Think: the logarithm base e is “the exponent y for which e is raised to in order to get back
the original input x”. We can refer to this as a 1 − 2 − 3 Memory-Aid Rule. That is, 1

raised to the 2 equals 3

loge 1
x 3

↪→
↶
= y 2 ⇐⇒ ey

2

1 = x 3

Shorthand: Set lnx = loge x

lnx = y ⇐⇒ ey = x
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Recall that the graph of Inverse Functions are mirror symmetrical flips across the line y = x.
Graph:

Figure 2: Natural Logarithm Function y = lnx

Let’s study some properties of this Natural Logarithm Function y = lnx.

Domain= (0,∞)
or
= {x : x > 0}

Recall, the Domain of a function is the collection of all possible input values which yield a
finite output or the values for which the function is defined. Here, lnx is only defined for
strictly positive input values x > 0

Recall: The logarithm function

{
• NEVER have an input value y = 0
• NEVER have a negative input value

Range= (−∞,∞) = R

Recall, the Range of a function is the collection of all possible output values for a given
function. Here ln x yields all possible output values.

Note: As Inverse Functions it makes sense, from their graphs/definitions, that

Domain ex = Range lnx

Domain lnx = Range ex

Value(s): ln 1 = 0

We can read this off the graph, but we can also think about the defined value.
ln 1 = loge(1) =? which means in reverse that e? = 1 so ? = 0. Think: 1 − 2 − 3 Memory-Aid.

WARNING: ln 0 is undefined , that is, there is no value y such that ey = 0 since the expo-
nential function is never output 0.
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Inverses:

ln ex = x for all x
elnx = x for x > 0

Note: these inverse properties state that the log and exponential invert each other, they
literally undo or unwind the other function value. They don’t just “cancel”.

Example: Simplify ln (e7) =��ln (�e
7) = 7

Example: Simplify eln 3 = �e�
ln3 = 3

Example: Solve e1−3x = 9 by taking logs of both sides, ln (e1−3x) = ln 9 with 1 − 3x = ln 9

solved to x =
(ln 9)− 1

−3

Example: Solve ln(7x + 4) = 8 by applying exponentials to both sides, eln(7x+4) = e8 with

7x+ 4 = e8 solved to x =
e8 − 4

7

Algebra:

Rule Tip

ln a+ ln b = ln(a · b) sum of the logs equals the log of the product
warning: NOT ln a · ln b

ln a− ln b = ln
(a
b

)
difference of the logs equals the log of the quotient

warning: NOT
ln a

ln b

ln
(
ab
)
= b · ln a power rule, constant can move down (from) or up (to) the exponent

watch the parentheses here

Warning: ln(a± b) and
ln a

ln b
do not simplify

Example: Simplify ln 2 + ln 2 + ln 2 = 3
↷
ln 2 = ln (23) = ln 8

Example: Simplify ln 8− ln 2 = ln

(
8

2

)
= ln 4

Example: Simplify e−3 ln 2 = eln(2
−3) = �e

�ln(2−3) = 2−3 =
1

23
=

1

8
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Limits: Study Graph

Limit Tip

lim
x→∞

lnx = ∞ as input values grow uncontrollably large, the lnx output grows to ∞

lim
x→0+

lnx = −∞ as input shrinks towards 0 from the right, the lnx shoots to −∞

Example: lim
x→5+

ln(x − 5) = lim
x→5+

ln�����*0+

(��>
5+

x− 5) = −∞ The arrows help justify the size argu-

ment(s).

Ex: lim
x→8−

ln |x− 8| = lim
x→8−

ln�
�
�
��
0+

|��
��>

0−

��>
8−

x− 8| = −∞

Derivatives:

Derivative Tip

d

dx
lnx =

1

x
derivative of log flips the input variable x

d

dx
ln (u(x)) =

1

u(x)
· u′(x) CHAIN RULE

flips the original input chunk. . .
times the derivative of the inside nested function

Recall: the Derivative Chain Rule can be written as

d

dx
(f(g(x))) = f ′(g(x))︸ ︷︷ ︸

deriv of outside
leave inside

· g′(x)︸︷︷︸
deriv of inside

Let us justify why the derivative of ln x equals
1

x
. That is, Prove:

d

dx
lnx =

1

x
Let y = lnx

Invert ey = x

Differentiate
d

dx
(ey) =

d

dx
(x) yielding ey

dy

dx
= 1

Finally, Solve
dy

dx
=

1

ey
=

1

x
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Example:
d

dx
ln(5 + 8x) =

1

5 + 8x
· 8 =

8

1 + 5x

Example:
d

dx

√
3 + ln x =

1

2
√
3 + ln x

·
(
1

x

)
=

1

2x
√
3 + ln x

Example:
d

dx
ln
(
7 + e6x

)
=

1

7 + e6x
·
(
6e6x

)
=

6e6x

7 + e6x

Note that the order of composed function matters. The following are not the same.

Example:
d

dx
ln (sinx) =

1

sinx
· cosx

Example:
d

dx
sin(lnx) = cos(ln x) · 1

x

Here again, the following are not the same.

Example:
d

dx
(lnx)3 = 3 (ln x)2

1

x
=

3 (lnx)2

x

Example:
d

dx
ln
(
x3
)
=

1

x3
· (3x2) =

3

x

Note: there is another way to compute this by simplifying first, then differentiating

Again:
d

dx
ln
(
x3
)
=

d

dx
3 ln (x) = 3

(
1

x

)
=

3

x

Integrals:

Integral Tip∫
1

x
dx = ln |x|+ C antiderivative of

1

x
is the natural log

WARNING : Be careful to use the Absolute Value, to make sure the logarithm does not get
handed negative values

IMPORTANT: We now have the function which is the Antiderivative of
1

x

Recall: the classic Power Rule

∫
xn dx =

xn+1

n+ 1
+ C for n ̸= −1

If we try to apply this Power Rule to
1

x
then we would get division by 0, undefined.
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Helpful WARNING/INCORRECT :

∫
1

x
dx ̸= x0

0
+ C

Note: be careful not to punch every integral with a denominator with the logarithm. That
is, be careful to only use the log antiderivative rule for 1 over x to the exact power 1. If
there is any other power of x, then we use the Power Rule above.

Helpful WARNING/INCORRECT :

∫
1√
x
dx ̸= ln

√
x+ C

Instead, using the correct power rule∫
1√
x
dx

prep
=

∫
x− 1

2 dx =
x

1
2

1
2

+ C = 2
√
x+ C

We might also be tempted to use the logarithm on the following

Helpful WARNING/INCORRECT :

∫
1

e6x
dx ̸= ln |e6x|+ C

Instead, using the correct k-Rule∫
1

e6x
dx

prep
=

∫
e−6x dx = −1

6
e−6x + C = − 1

6e6x
+ C

INDEFINITE Integrals with u-substitution: Always remember to add +C right away,
as soon as you compute the Most General Antiderivative. The original variable always
reappears when we re-substitute back for u.

Recall: u-substitution is a temporary convenience that hides a nested, meaty chunk of your
integrand to first simplify the integral, and second, to match the derivative chunk, all with
the overall goal of reversing the Chain Rule.

Example:

∫
e3x

5 + e3x
=

1

3

∫
1

u
du =

1

3
ln |u|+ C =

1

3
ln |5 + e3x|+ C

u = 5 + e3x

du = 3e3x dx
1
3
du = e3xdx

Example:

∫
tanx dx =

∫
sinx

cosx
dx = −

∫
1

u
du = − ln |u|+ C = − ln | cosx|+ C

u = cosx
du = − sinxdx

−du = sinxdx

Note: Many different integrals lead to the same u-sub integral leading to Log.
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Example:

∫
1

√
x
(
8 +

√
x
) dx = 2

∫
1

u
du = 2 ln |u|+ C = 2 ln |8 +

√
x|+ C

u = 8 +
√
x

du =
1

2
√
x
dx

2du =
1√
x
dx

Example:∫
1

x
(
9 + ln x

)3 dx =

∫
1

u3
du

prep
=

∫
u−3 du =

u−2

−2
+ C

= − 1

2u2
+ C = − 1

2 (9 + lnx)2
+ C

u = 9 + lnx

du =
1

x
dx

IMPORTANT: Notice for u-sub with logarithms, sometimes the log acts as the u and
sometimes the denominator holds the u with its power exactly 1, antidifferentiating to log.

QUESTION: How do we know which method of integration to use, u-substitution or Alge-
bra or both? Here are two examples that model the different options. Generally, try u-sub
and if the derivative du does not match, then you can try Algebra as a (good) back-up plan.
Let us study two similar examples with different integration methods . . .

Example: u-substitution works∫
x6

2− x7
dx = −1

7

∫
1

u
du = −1

7
ln |u|+ C = −1

7
ln |2− x7|+ C

u = 2− x7

du = −7x6 dx
−1

7
du x6dx

Example: Algebra plus log rule works∫
2− x6

x7
dx

split
=

∫
2

x7
− x6

x7
dx

prep
=

∫
2x−7 − 1

x
dx

= 2

(
x−6

−6

)
− ln |x|+ C = − 1

3x6
− ln |x|+ C
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DEFINITE Integrals: Recall, you must change (or temporarily mark) your Limits of
integration. The variables and Limits of Integration change simultaneously. Once you switch
your Limits of Integration to u-values, then the original variable never reappears.

Example:∫ 3

2

1

5− 4x
dx = −1

4

∫ −7

−3

1

u
du = −1

4
ln |u|

∣∣∣∣−7

−3

= −1

4
(ln | − 7| − ln | − 3|) = −1

4
ln

(
7

3

)

u = 5− 4x
du = −4 dx

−1
4
du = dx

and
x = 2 ⇒ u = 5− 8 = −3

x = 3 ⇒ u = 5− 12 = −7

Note: Without the Absolute Value bars, we would have undefined log values of negative
numbers

Example:∫ ln 3

0

e2x

1 + e2x
dx =

1

2

∫ 10

2

1

u
du =

1

2
ln |u|

∣∣∣∣10
2

=
1

2
(ln |10| − ln |2|)

=
1

2
ln

(
10

2

)
=

1

2
ln 5 + C

u = 1 + e2x

du = 2e2xdx
1
2
du = e2xdx

and

x = 0 ⇒ u = 1 + e0 = 1 + 1 = 2

x = ln 3 ⇒ u = 1 + e2 ln 3 = 1 + eln(3
2) = 10

Example:∫ ln 8

ln 3

ex√
1 + ex

dx =

∫ 9

4

1√
u
du =

∫ 9

4

u− 1
2 du =

u
1
2

1
2

∣∣∣∣9
4

= 2
√
u

∣∣∣∣9
4

= 2
(√

9−
√
4
)
= 2(3− 2) = 2

u = 1 + ex

du = exdx
and

x = ln 3 ⇒ u = 1 + eln 3 = 1 + 3 = 4

x = ln 8 ⇒ u = 1 + eln 8 = 1 + 8 = 9
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