Natural Logarithm Function y = Inxz Review

In this handout, we will review the Natural Logarithm Function y = Inx by studying its
related

1. Function properties
2. Limits

3. Derivatives

4. Integrals

Start by reviewing the Natural Exponential Function y = e”.

function, since it is a strictly increasing function (why?).

e NEVER yield the output value y =0
e NEVER yield a negative output value

It is indeed a one-to-one

Recall: The exponential function {
Graph:
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Figure 1: Natural Exponential Function y = e”*

Goal: To find an Inverse function for the Natural Exponential function y = €%, that is, find
a reversing function to solve an equation like e!=3* =9

Note: There are different approaches to exploring the Logarithm, but we will focus on the
Inverse of y = e”.

Definition: The Natural Logarithm Function y = log, x is defined as the unique
y-value such that e¥ = x.

Think: the logarithm base e is “the exponent y for which e is raised to in order to get back

the original input z”. We can refer to this as a ® — @ — ® Memory-Aid Rule. That is, ®
raised to the ® equals ®

Shorthand: Set Inz = log,

ner=y < ==z



Recall that the graph of Inverse Functions are mirror symmetrical flips across the line y = x.
Graph:
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Figure 2: Natural Logarithm Function y = Inx

Let’s study some properties of this Natural Logarithm Function y = In .
Domain= (0,00) = {z : 2 > 0}

Recall, the Domain of a function is the collection of all possible input values which yield a
finite output or the values for which the function is defined. Here, Inx is only defined for

strictly positive input values x > 0
e NEVER have an input value y =0

Recall: The logarithm function { ¢ NEVER have a negative input value

Range= (—00,00) =R

Recall, the Range of a function is the collection of all possible output values for a given
function. Here Inz yields all possible output values.

Note: As Inverse Functions it makes sense, from their graphs/definitions, that

Domain e* = Range Inz

Domain Inz = Range e”

Value(s): Inl1=0

We can read this off the graph, but we can also think about the defined value.
In1 = log,(1) =? which means in reverse that ¢’ = 1 so ? = 0. Think: ®—©—® Memory-Aid.

WARNING: In 0 is undefined , that is, there is no value y such that e¥ = 0 since the expo-
nential function is never output 0.



Inverses:

Ine® =z for all x
et =g forx >0

Note: these inverse properties state that the log and exponential invert each other, they
literally undo or unwind the other function value. They don’t just “cancel”.

Example: Simplify In (e7) = W (¢7) =7
Example: Simplify "3 = ¢h{3 =3
Example: Solve e!™3* = 9 by taking logs of both sides, In (¢! 73%) = In9 with 1 — 3z = In9

(In9) — 1
e

solved to © =

Example: Solve In(7z + 4) = 8 by applying exponentials to both sides, e™(™+4) = ¢8 with

8
—4
Tx +4 = e® solved to z = € -
Algebra:

Rule Tip

Ina+1Inb=1In(a-b) | sum of the logs equals the log of the product
warning: NOT Ina-Inb

Ina—1Inb=In (%) difference of the logs equals the log of the quotient
warning: NOT ln_a
Inb

In (ab) =b-lna power rule, constant can move down (from) or up (to) the exponent
watch the parentheses here

|
Warning: In(a £ b) and % do not simplify
n

Example: Simplify In2+1In2+1In2 =3 1?1 2=1In(2%) =1In8

Example: Simplify In8 —1In2 = In (;) =1In4

= — 1 1
Example: Simplify e3"% = em(27%) = ;z‘*f(z ) =98 = 5 =3



Limits: Study Graph

Limit

Tip

lim Inz = oo
Xr—r0Q0

as input values grow uncontrollably large, the In z output grows to oo

lim Inz = —0
z—0*

as input shrinks towards 0 from the right, the In x shoots to —oo

O+

Example: lim In(z —5) = lim In j;%é%/)’ = —oo The arrows help justify the size argu-

z—5+
ment(s).

z—5t

0+

Ex: lim Injz — 8| = lim ln\/é/&: —00

r—8~ T8~
Derivatives:
Derivative Tip
e Inx =— derivative of log flips the input variable z
x x
d In (u(z)) '(z) | CHAIN RULE
—In(u(z)) = — - u'(x
dx u(z)
flips the original input chunk. ..
times the derivative of the inside nested function

Recall: the Derivative Chain Rule can be written as

d
o (flg@)) = flg(@) - g(a)
T N——
deriv of outside deriv of inside
leave inside
o o 1 . d
Let us justify why the derivative of Inx equals —. That is, Prove: e Inx = —
x x x

Let y=Inz

Invert e¥ =z

d d d
Differentiate I () = — () yielding eyd—i =1

d
Finally, Solve =2
dx

dx




d 1 8
le: —1 = . =
Example - n(5 + 8z) F 8 8 T 52

d 1 1 1
Example: *v/3+Inz :—.(_):—
xample: - nx . Y e

. d 6\ __ 1 6x\ __ 6663:
Example: %ln(7+e ) = (66 ) =

Note that the order of composed function matters. The following are not the same.

d
Example: e In (sinz) = - COS T

sin

1
Example: ;i—m sin(Inz) = cos(lnz) - -

Here again, the following are not the same.

3(Inz)’
T

d
Example: e (Inz)® = 3 (Inx)?

SHE

d 1 3
Example: o In (m3) == (32%) = p

Note: there is another way to compute this by simplifying first, then differentiating

Again: j—ln (xg) = d—31n (r) =3 (1) — 3
x

dx T T

Integrals:

Integral ‘ Tip

1
antiderivative of — is the natural log
x

1
/—d:czln]:cH—C
T

WARNING : Be careful to use the Absolute Value, to make sure the logarithm does not get
handed negative values

IMPORTANT: We now have the function which is the Antiderivative of l
x

n+1
Recall: the classic Power Rule / o dy = 2 +C  forn#—1

n—+1

1
If we try to apply this Power Rule to — then we would get division by 0, undefined.
x



1 0

Helpful WARNING /INCORRECT : / dz # “% +C

z
Note: be careful not to punch every integral with a denominator with the logarithm. That

is, be careful to only use the log antiderivative rule for 1 over x to the exact power 1. If
there is any other power of x, then we use the Power Rule above.

Helpful WARNING/INCORRECT : / # Inyz+C

1
—d
v

Instead, using the correct power rule
1

1 re 1 2

We might also be tempted to use the logarithm on the following
1

Helpful WARNING/INCORRECT : / —= dr # ||+ C
e

1
2

Instead, using the correct k-Rule

1 re 1 1
/—dxp:p/e_ﬁ’” de = —=e % 4 C = +C

eb 6 6eb

INDEFINITE Integrals with u-substitution: Always remember to add +C right away,
as soon as you compute the Most General Antiderivative. The original variable always
reappears when we re-substitute back for wu.

Recall: u-substitution is a temporary convenience that hides a nested, meaty chunk of your
integrand to first simplify the integral, and second, to match the derivative chunk, all with
the overall goal of reversing the Chain Rule.

u

sz 1 /1 1 1
Example:/e—:—/ du:§1n|u|+C’: §1n|5+63w|+0

5+ 3
u =5+4e*
du = 3e3* dx
%du = e37dx

i 1
Example: /tanx dx—/ e dx——/—du——ln|u]+C’— —In|cosz|+C
u

CcoS T
U = COSZT
du = —sinzdx
—du = sinzdx

Note: Many different integrals lead to the same u-sub integral leading to Log.



1 1
Example: / dx:2/adU:21H|U|+C=21n|8+\/§|+C
Vi (B+ V)

du = —— dx
2\/x
1
Example:
1 1 re -2
/ 5 dx :/—Bdup:p/u_3du:u—2+0
$<9+lnx> u N
1 1
=——4+C=|—
2u? 2(9+1Inz)?
v =9+Inz
1
du = — dx
T

IMPORTANT: Notice for u-sub with logarithms, sometimes the log acts as the u and
sometimes the denominator holds the v with its power exactly 1, antidifferentiating to log.

QUESTION: How do we know which method of integration to use, u-substitution or Alge-
bra or both? Here are two examples that model the different options. Generally, try u-sub
and if the derivative du does not match, then you can try Algebra as a (good) back-up plan.
Let us study two similar examples with different integration methods ...

Example: u-substitution works

6 1 1 1 1

2 —a’
u =2—2a"
du = —T72% dx
—%du 28dx

Example: Algebra plus log rule works

2— 6 spli 2 6 re 1
/ f dz Iit/—7—$—7dxp:p/2x7——dx
x x x x

x= 6 1




DEFINITE Integrals: Recall, you must change (or temporarily mark) your Limits of
integration. The variables and Limits of Integration change simultaneously. Once you switch
your Limits of Integration to u-values, then the original variable never reappears.

Example:

51 1 /"1 1
/ dx :——/ — du=—=1n|u|
) 5 — 4z 4) 5 u 4 »

:—i(ln]—7]—ln|—3]): g <§>

-7

u =5b—A4x r=2=>u=5—8=-3
du = —4dx |and

Note: Without the Absolute Value bars, we would have undefined log values of negative
numbers

Example:
n3 2 10 10
e’ 1 1 1 1
de == —du=-1 = —(In|10| — In|2
/0 1+€2x x 2/2 U u QH‘U,|2 2(n| ’ n‘l)
1 10 1
=—Inl— ) =|=-In5+4+C
2“(2) g O
u =1+e* r=0=u=1+e"=1+1=2
du = 2e**dz |and
tdu = e*dx r=In3=u=1+em3 =142 =10
Example:

1

In8 e d /9 1 9 i w2
- x — R -

I

m3 V1+er 4 Vu 4 3

v — 1+t r=In3=u=1+e 1+3

du = e*dx and

r=In8=u=1+e"=14+8=9




