Homework #16

Due Friday, November 15th in Gradescope by 11:59 pm ET

Goal: Exploring more of the Relationship between Power Series and functions, including Differentiation and Integration of Power Series. Also *substitution* into a known MacLaurin Series. Also SUMS which are not Geometric.

Find the Series Representation for the following functions using substitution and determine the Radius of Convergence R. Simplify.

1.
$$\frac{1}{1+x^2}$$

1.
$$\frac{1}{1+x^2}$$
 2. $\frac{x^2}{x^4+16}$ 3. $x^3\cos(x^2)$ 4. $5x^2\sin(5x)$

3.
$$x^3 \cos(x^2)$$

$$4. 5x^2 \sin(5x)$$

5.
$$\frac{d}{dx}(x^3\arctan(7x))$$
 6. $\int x^3\arctan(7x) dx$ 7. $\frac{d}{dx}x^2\ln(1+6x)$ 8. $\int x^4e^{-x^3} dx$

$$6. \int x^3 \arctan(7x) \ dx$$

$$7. \frac{d}{dx}x^2\ln(1+6x)$$

8.
$$\int x^4 e^{-x^3} dx$$

9. Find the Series Representation for $f(x) = \frac{1}{(1+x)^2}$

Hint:
$$\frac{1}{(1+x)^2} = \frac{d}{dx} \left(-\frac{1}{1+x} \right)^{PS?} = \dots$$

10. Prove the Power Series Representation formula for $\arctan x$, as shown in class. Yes, show that C = 0.

11. Find Series Representation for $\ln(5-x)$. Solve for C and the Radius R.

Hint:
$$\ln(5-x) = \int \frac{-1}{5-x} dx = \int \frac{-1}{5\left(1-\frac{x}{5}\right)} dx = -\frac{1}{5}\int \frac{1}{1-\frac{x}{5}} dx = \dots$$

12. Find the MacLaurin Series for $f(x) = e^{-2x}$ using two different methods.

First, using the *Definition* of the MacLaurin Series ("Chart Method").

Second, use Substitution into a known series. Your answers should be in Sigma notation.

Continue to next page

13. You do **not** need to state the Radius. Answers should be in Sigma notation \sum here.

 $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ without extra justification. You may use the fact that

- (a) Use the Definition ("Chart Method") to compute the MacLaurin Series for $F(x) = \cos x$.
- (b) Use Differentiation to compute the Series for $F(x) = \cos x$.
- (c) Use Integration to compute the Series for $F(x) = \cos x$.

Hints: yes, you should solve for +C. yes, C should equal 1. Show why C=1.

Find the Sum of each of the following Series, which do converge.

14.
$$\sum_{n=0}^{\infty} \frac{7^n}{n!}$$

15.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \ 5^n}{n!}$$

14.
$$\sum_{n=0}^{\infty} \frac{7^n}{n!}$$
 15.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{n!}$$
 16.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$$

17.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$
 18.
$$\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$
 19.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

18.
$$\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$$

19.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

20.
$$1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \dots$$

$$21. \ 3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$$

REGULAR OFFICE HOURS

Sunday 6:00–9:00 pm TAs Natalie/Oscar, SMUDD 207

Monday: 12:00–3:00 pm

6:00-9:00 pm TAs Aaron/Oscar, SMUDD 207

Tuesday: 1:00–4:00 pm

6-7:30 pm TA Gretta, SMUDD 207

Wednesday: 1:00-3:00 pm

7:30-9:00 pm TA Natalie, SMUDD 207

Thursday: none for Professor

extras may be added, TBD weekly

6-9:00 pm TAs Gretta/DJ, SMUDD 207

Friday: 12:00–3:00 pm

6:00–9:00 pm TAs Aaron/DJ, SMUDD 207

Pay careful attention to details here.

Manipulating power series requires a balance of memory and technical skill.