

Natural Exponential Function $y = e^x$ Review

In this handout, we will review the Natural Exponential Function $y = e^x$ by studying its related

1. Function properties
2. Limits
3. Derivatives
4. Integrals

Start by reviewing the General Exponential Function $y = a^x$ with a positive *base* $a > 0$.

Note that the **base** a is a fixed Real number and the **exponent** x is the input variable, free to range in \mathbb{R} .

If the exponent x is an integer, then we define $a^x = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{x \text{ copies, multiplied}}$

Example: Simplify $6^2 = 6 \cdot 6 = 36$

Example: Simplify $4^3 = 4 \cdot 4 \cdot 4 = 64$

Example: Simplify $3^5 = \underbrace{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}_{5 \text{ copies}} = 243$

If the exponent x is a rational number $\frac{p}{q}$, then we define $a^{\frac{p}{q}} = (a^p)^{\frac{1}{q}} \stackrel{\text{or}}{=} \left(a^{\frac{1}{q}}\right)^p$

Example: Simplify $8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$ or $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$

Example: Simplify $(25)^{\frac{3}{2}} = (\sqrt{25})^3 = 5^3 = 125$ or $(25)^{\frac{3}{2}} = \sqrt{(25)^3} = \sqrt{15625} = 125$

We have three possible graphs. The exponential function will be *decreasing* if the base satisfies $0 < a < 1$. It will be *constant* value of 1 if the base $a = 1$, and it will be *increasing* if the base $a > 1$.

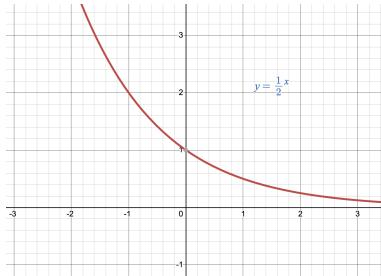


Figure 1: Base $0 < a < 1$

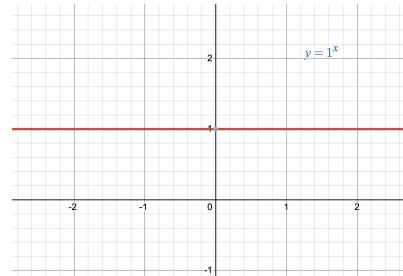


Figure 2: Base $a = 1$



Figure 3: Base $a > 1$

Note that for all of these possible graphs, we have the functions passing through the point $(0, 1)$ since $a^0 = 1$.

IMPORTANT: The exponential functions $\left\{ \begin{array}{l} \bullet \text{ NEVER yield the output value } y = 0 \\ \bullet \text{ NEVER yield a negative output value} \end{array} \right.$

Recall the Limit Definition of the Derivative $f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$
 By studying the long limit definition of the derivative we see that

$$\frac{d}{dx}(a^x) = \lim_{h \rightarrow 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \rightarrow 0} \frac{a^x \cdot a^h - a^x}{h} = \lim_{h \rightarrow 0} \frac{a^x(a^h - 1)}{h} = a^x \left[\lim_{h \rightarrow 0} \frac{a^h - 1}{h} \right]$$

We notice that the derivative of a General Exponential is almost the same as itself, times a complicated limit factor. Here are some samples.

Examples: $\frac{d}{dx}(2^x) = 2^x(0.693\dots)$ and $\frac{d}{dx}(3^x) = 3^x(1.0986\dots)$

Ideally, this complicated limit multiplier would be equal to 1, which motivates the following *special* exponential function.

Definition: The Natural Exponential Function is given by $y = e^x$ where the base e is chosen so that $\frac{d}{dx}e^x = e^x$.

Here $2 < e < 3$ and $e \approx 2.71828\dots$

Since the base e is bigger than 1, we know the function is *strictly increasing* with the following important graph

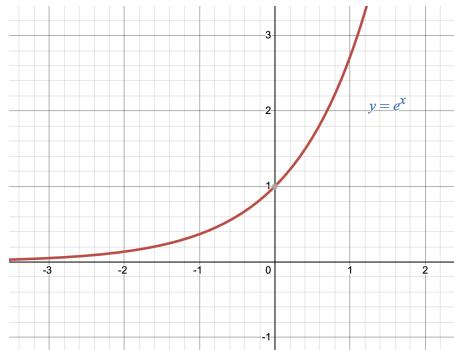


Figure 4: Natural Exponential Function $y = e^x$

Think: The derivative of e^x is itself e^x which is *positive*. Recall, from Calculus I, that **if the derivative is positive, then the function is increasing**. Also, no critical points, why?

Let's study some properties of this Natural Exponential Function $y = e^x$.

Domain = $(-\infty, \infty) = \mathbb{R}$

Recall, the *Domain* of a function is the collection of all possible input values which yield a finite output or the values for which the function is defined. Here, e^x is defined for every possible Real number input.

Range = $(0, \infty)$ ^{or} $\{y : y > 0\}$

Recall, the *Range* of a function is the collection of all possible output values for a given function. Here e^x only yields strictly positive output values, that is, never 0 and never negative.

Value(s): $e^0 = 1$

Algebra:

Rule	Tip
$e^a \cdot e^b = e^{a+b}$	with multiplication, if the bases match, then ADD the exponents
$\frac{e^a}{e^b} = e^{a-b}$	with division, if the bases match, then SUBTRACT the exponents
$(e^a)^b = e^{ab}$	<i>piggy-back</i> exponents MULTIPLY
$\frac{1}{e^a} = e^{-a}$	move an exponent up or down in fraction, must CHANGE SIGN

Limits:

Limit	Tip
$\lim_{x \rightarrow \infty} e^x = \infty$	as input values grow uncontrollably large, the e^x output explodes to ∞
$\lim_{x \rightarrow -\infty} e^x = 0$	as input grows uncontrollably large <i>negative</i> , the e^x output settles to 0

Note: from the graph of $y = e^x$ we see that there is a Horizontal Asymptote at $y = 0$

Derivatives:

Derivative	Tip
$\frac{d}{dx} e^x = e^x$	derivative of natural exponential is exactly itself
$\frac{d}{dx} e^{u(x)} = e^{u(x)} \cdot u'(x)$	CHAIN RULE get the original exponential back . . . times the derivative of the <i>inside nested</i> function

Recall: the Derivative Chain Rule can be written as

$$\frac{d}{dx}(f(g(x))) = \underbrace{f'(g(x))}_{\substack{\text{deriv of outside} \\ \text{leave inside}}} \cdot \underbrace{g'(x)}_{\text{deriv of inside}}$$

Example: $\frac{d}{dx}e^{8x} = e^{8x} \cdot 8 = 8e^{8x}$

Example: $\frac{d}{dx}e^{\tan x} = e^{\tan x} \cdot \sec^2 x$

Example: $\frac{d}{dx}e^{\sqrt{x}} = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$

Note: If the Exponential is in the denominator, you can sometimes **PREP** the function for the Chain Rule, by moving it to the numerator using our Algebra rule above.

Example: $\frac{d}{dx}\left(\frac{1}{e^{5x}}\right) \stackrel{\text{prep}}{=} \frac{d}{dx}(e^{-5x}) = e^{-5x} \cdot (-5) = -5e^{-5x} \stackrel{\text{or}}{=} \frac{-5}{e^{5x}}$

Note: be careful **not** to use the power rule on exponentials.

Helpful **WARNING/INCORRECT:** $\frac{d}{dx}e^x \neq xe^{x-1}$

There may be different approaches to compute a more complex derivative. We have many derivative rules. For the next example, involving a product, you can either first FOIL out the algebra and *then* use the Chain Rules on each individual piece, **or** you can first use the Product Rule, and then FOIL out the algebra to simplify. The answers should match.

Question: Which method is simpler?

Example: Compute $\frac{d}{dx}[(e^{3x} + e^{-2x})(e^x - e^{-x})]$

METHOD 1 → First use Algebra, then use Chain Rule

$$\begin{aligned} \frac{d}{dx}[(e^{3x} + e^{-2x})(e^x - e^{-x})] &\stackrel{\text{FOIL}}{=} \frac{d}{dx}(e^{4x} - e^{2x} + e^{-x} - e^{-3x}) \\ &\stackrel{\text{chain rule}}{=} [4e^{4x} - 2e^{2x} - e^{-x} + 3e^{-3x}] \end{aligned}$$

METHOD 2 → First use Product Rule, then use Algebra to simplify

$$\begin{aligned} \frac{d}{dx}[(e^{3x} + e^{-2x})(e^x - e^{-x})] &\stackrel{\text{Product rule}}{=} (e^{3x} + e^{-2x})(e^x + e^{-x}) + (e^x - e^{-x})(3e^{3x} - 2e^{-2x}) \\ &\stackrel{\text{FOIL}}{=} e^{4x} + e^{2x} + e^{-x} + e^{-3x} + 3e^{4x} - 2e^{-x} - 3e^{2x} + 2e^{-3x} \\ &\stackrel{\text{simplify}}{=} [4e^{4x} - 2e^{2x} - e^{-x} + 3e^{-3x}] \quad \text{Match!} \end{aligned}$$

Recall: the Derivative Product Rule can be written as

$$\frac{d}{dx} (f(x) \cdot g(x)) = f(x) \cdot g'(x) + g(x) \cdot f'(x)$$

Integrals:

Integral	Tip
$\int e^x \, dx = e^x + C$	antiderivative of natural exponential is exactly itself

Note: be careful **not** to use the power rule on exponentials.

Helpful **WARNING/INCORRECT:** $\int e^x \, dx \neq \frac{e^{x+1}}{x+1} + C$

At this point in the course, there are only three Methods of Integration:

1. Snap Facts, *we know it*
2. Algebra
3. *u*-substitution

INDEFINITE Integrals with *u*-substitution: Always remember to add $+C$ right away, as soon as you compute the Most General Antiderivative. The original variable always reappears when we re-substitute back for *u*.

Recall: *u*-substitution is a temporary convenience that hides a nested, meaty chunk of your integrand to first simplify the integral, and second, to match the derivative chunk, all with the overall goal of reversing the Chain Rule.

Example:
$$\int \underbrace{\sin \left(\underbrace{e^x}_{u} \right)}_{du} \, dx = \int \sin u \, du = -\cos u + C = \boxed{-\cos(e^x) + C}$$

$$\begin{aligned} u &= e^x \\ du &= e^x \, dx \end{aligned}$$

Example:
$$\int \underbrace{e^x}_{du} \left(\underbrace{e^x - 4}_{u} \right)^6 \, dx = \int u^6 \, du = \frac{u^7}{7} + C = \boxed{\frac{(e^x - 4)^7}{7} + C}$$

$$\begin{aligned} u &= e^x - 4 \\ du &= e^x \, dx \end{aligned}$$

Example:
$$\int \frac{du}{\sqrt{\frac{e^{5x}}{2+e^{5x}}}} = \frac{1}{5} \int \frac{1}{\sqrt{u}} du = \frac{1}{5} \int u^{-\frac{1}{2}} du = \frac{1}{5} \left(\frac{u^{\frac{1}{2}}}{\frac{1}{2}} \right) + C$$

$$= \frac{2}{5} \sqrt{u} + C = \boxed{\frac{2}{5} \sqrt{2+e^{5x}} + C}$$

$u = 2 + e^{5x}$
$du = 5e^{5x} dx$
$\frac{1}{5}du = e^{5x} dx$

Example:

$$\int \frac{5}{e^{6x} (8+e^{-6x})^3} dx = -\frac{5}{6} \int \frac{1}{u^3} du = -\frac{5}{6} \int u^{-3} du = -\frac{5}{6} \left(\frac{u^{-2}}{-2} \right) + C$$

$$= \frac{5}{12u^2} + C = \boxed{\frac{5}{12(8+e^{-6x})^2} + C}$$

$u = 8 + e^{-6x}$
$du = -6e^{-6x} dx$
$-\frac{1}{6}du = \frac{1}{e^{6x}} dx$

IMPORTANT: Notice for u -substitution with exponentials, sometimes the exponential *acts as* the u and sometimes the exponential *holds* the u up in its power.

We have a special case for exponential integrals, when the exponential is holding a simpler *constant* times x .

Example: $\int e^{7x} dx = \frac{1}{7} \int e^u du = \frac{1}{7} e^u + C = \boxed{\frac{e^{7x}}{7} + C}$

$u = 7x$
$du = 7 dx$
$\frac{1}{7}du = dx$

Example: $\int e^{-5x} dx = -\frac{1}{5} \int e^u du = -\frac{1}{5} e^u + C = \boxed{-\frac{e^{-5x}}{5} + C}$

$u = -5x$
$du = -5 dx$
$-\frac{1}{5}du = dx$

“ k -Rule” for Natural Exponential: Note, these examples can be generalized to a snap-fact, which we will refer to as the Exponential “ k -Rule”, so we can avoid justifying the u -substitution each time

Integral	Tip
$\int e^{kx} dx = \frac{1}{k}e^{kx} + C$	Exponential “ k -Rule” with constant $k \neq 0$

Practice a few quicker examples, using the snap-fact k -Rule

Example: $\int e^{8x} dx = \frac{e^{8x}}{8} + C$ applying the k -Rule

Example: $\int \frac{1}{e^{3x}} dx = \int e^{-3x} dx = \frac{e^{-3x}}{-3} + C$ applying the k -Rule

INDEFINITE Integrals with FOIL Algebra: examples involving Algebra to FOIL out a complicated function before integrating each piece (using new k -rule).

Example:

$$\begin{aligned} \int \left(e^x - \frac{1}{e^x} \right)^2 dx &= \int (e^x - e^{-x})(e^x - e^{-x}) dx \stackrel{\text{FOIL}}{=} \int e^{2x} - e^x - e^{-x} + e^{-2x} du \\ &= \int e^{2x} - 2 + e^{-2x} du = \frac{e^{2x}}{2} - 2x + \frac{e^{-2x}}{-2} + C \\ &= \boxed{\frac{e^{2x}}{2} - 2x - \frac{1}{2e^{2x}} + C} \end{aligned}$$

Example:

$$\begin{aligned} \int \left(e^{2x} - \frac{1}{e^x} \right) \left(e^x - \frac{1}{e^{5x}} \right) dx &= \int (e^{2x} - e^{-x})(e^x - e^{-5x}) dx \\ &\stackrel{\text{FOIL}}{=} \int e^{3x} - e^{-3x} - e^x + e^{-6x} du \\ &= \frac{e^{3x}}{3} - \frac{e^{-3x}}{-3} - x + \frac{e^{-6x}}{-6} + C \\ &= \boxed{\frac{e^{3x}}{3} + \frac{1}{3e^{3x}} - x - \frac{1}{6e^{6x}} + C} \end{aligned}$$

QUESTION: How do we know which method of integration to use, u -substitution or Algebra or both? Here are two examples that model the different options. Generally, try u -sub and if the derivative du does not match, then you can try Algebra FOIL as a (good) back-up plan. Let us study two similar examples with different integration methods ...

Example: u -substitution works

$$\int \frac{e^{4x}}{(1+e^{4x})^2} dx = \frac{1}{4} \int \frac{1}{u^2} du = \frac{1}{4} \int u^{-2} du = \frac{1}{4} \left(\frac{u^{-1}}{-1} \right) + C$$

$$= -\frac{1}{4u} + C = \boxed{-\frac{1}{4(1+e^{4x})} + C}$$

u	$= 1 + e^{4x}$
du	$= 4e^{4x} dx$
$\frac{1}{4}du$	$= e^{4x}dx$

Example: Algebra plus k -Rules works

$$\int \frac{(1+e^{4x})^2}{e^{4x}} dx = \int \frac{(1+e^{4x})(1+e^{4x})}{e^{4x}} dx = \int \frac{1+2e^{4x}+e^{8x}}{e^{4x}} dx$$

$$\stackrel{\text{split}}{=} \int \frac{1}{e^{4x}} + \frac{2e^{4x}}{e^{4x}} + \frac{e^{8x}}{e^{4x}} dx \stackrel{\text{prep}}{=} \int e^{-4x} + 2 + e^{4x} dx$$

$$\stackrel{k\text{-rules}}{=} \boxed{\frac{e^{-4x}}{-4} + 2x + \frac{e^{4x}}{4} + C}$$

DEFINITE Integrals: Recall, you must change (or temporarily mark) your Limits of integration. The variables and Limits of Integration change *simultaneously*. Once you *switch* your Limits of Integration to u -values, then the original variable never reappears. We will save example for more interesting values coming soon, once we study Logarithms.

Example:

$$\int_0^1 e^x \sqrt{5-e^x} dx = - \int_4^{5-e} \sqrt{u} du = - \int_4^{5-e} u^{\frac{1}{2}} du = - \left(\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right) \bigg|_4^{5-e} = -\frac{2}{3} u^{\frac{3}{2}} \bigg|_4^{5-e}$$

$$= -\frac{2}{3} \left((5-e)^{\frac{3}{2}} - 4^{\frac{3}{2}} \right) = \boxed{-\frac{2}{3} \left((5-e)^{\frac{3}{2}} - 8 \right)}$$

u	$= 5 - e^x$
du	$= -e^x dx$
$-du$	$= e^x dx$

and	$x = 0 \Rightarrow u = 5 - e^0 = 5 - 1 = 4$
	$x = 1 \Rightarrow u = 5 - e$