- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin \left(\frac{\pi}{6}\right), 4^{\frac{3}{2}}, e^{\ln 4}, \ln \left(e^{7}\right), e^{3 \ln 3}, \arctan \sqrt{3}$ or $\cosh (\ln 3)$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

1. [16 Points] Find the Interval and Radius of Convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n}(6 x+1)^{n}}{(6 n+1) \cdot 7^{n}}$ Analyze carefully and with full justification.
2. [12 Points] Find the MacLaurin Series for each of the following functions. State the Radius of Convergence for each series. Your answers should all be in sigma notation $\sum_{n=0}^{\infty}$ here. Simplify.
(a) $\frac{x^{2}}{4+x}=x^{2}\left(\frac{1}{4+x}\right)$
(b) $8 x^{4} \arctan (8 x)$
3. [16 Points] Your answers should all be in sigma notation $\sum_{n=0}^{\infty}$ here. Simplify.
(a) Use Series to compute $\frac{d}{d x}\left(5 x^{2} e^{-x^{3}}\right)$.
(b) Use Series to compute $\int x^{3} \sin \left(8 x^{4}\right) d x$.
4. [10 Points] Use the Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{20}$. Justify.
5. [26 Points] Find the sum for each of the following convergent series. Simplify, if possible.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{(16)^{n}(2 n+1)!}$
(b) $3+3-\frac{3}{2}+1-\frac{3}{4}+\frac{3}{5}-\frac{3}{6}+\frac{3}{7}-\ldots$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2 n+1}}{4!(2 n)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\ln 8)^{n}}{3^{n+1} n!}$
(e) $-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\frac{\pi^{9}}{9!}-\ldots$
(f) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}} \quad$ Hint: $3=(\sqrt{3})^{2}$
6. [10 Points] Use Series and Integration to Derive the following MacLaurin Series formula:

$$
\ln (1+6 x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 6^{n+1} x^{n+1}}{n+1}
$$

USE the following helpful formula: $\quad \ln (1+6 x)=\int \frac{6}{1+6 x} d x$
Yes, show that $C=0$. Answer should be in Sigma notation $\sum_{n=0}^{\infty}$
7. [10 Points]

Consider the Parametric Curve given by $\quad x=(\arctan t)-t$ and $y=2 \sinh ^{-1} t$.

Compute the Arclength of this parametric curve for $0 \leq t \leq \sqrt{3}$.

Hint: $\quad \frac{d}{d x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}}$

