Math 121 Midterm Exam \#3 May 6-9, 2021

Due Sunday, May 9, in Gradescope by 11:59 pm ET

- This is an Open Notes Exam. You can use materials, homeworks problems, lecture notes, etc. that you manually worked on.
- There is NO Open Internet allowed. You can only access our Main Course Webpage.
- You are not allowed to work on or discuss these problems with anyone. You can ask a few small, clarifying, questions about instructions in Office Hours, but these problems will not be solved.
- Submit your final work in Gradescope in the Exam 3 entry.
- Please show all of your work and justify all of your answers. No Calculators.

1. [14 Points] Find the Interval and Radius of Convergence for the following power series.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(6 x+1)^{n}}{(6 n+1)^{2} \cdot 7^{n}}
$$

2. [6 Points] Design a Power Series which is convergent only at $x=5$. Once you create your series, then proceed to justify that the Interval of Convergence is indeed $I=\{5\}$.
3. [6 Points] Design a Power Series which is convergent only on the open interval $5<x<7$. Once you create your series, then proceed to justify that the Interval of Convergence is indeed $I=(5,7)$.
4. [10 Points] Find the MacLaurin Series for each of the following functions. State the Radius of Convergence for each series. Your answers should all be in sigma notation $\sum_{n=0}^{\infty}$ here. Simplify.
(a) $\frac{x^{2}}{4+x}$
(b) $6 x^{4} \arctan (6 x)$
5. [10 Points] Your answers should all be in sigma notation $\sum_{n=0}^{\infty}$ here. Simplify.
(a) Use MacLaurin Series to compute $\frac{d}{d x}\left(5 x^{2} e^{-x^{3}}\right)$.
(b) Use MacLaurin Series to compute $\int x^{3} \sin \left(8 x^{4}\right) d x$.
6. [7 Points] Use MacLaurin Series to Estimate $\cos \left(\frac{1}{2}\right)$ with error less than $\frac{1}{10000}$.

Tips: $6!=720$ and $(720) \cdot(64)=46,080$ and $(48) \cdot 8=384$
7. [24 Points] Find the sum for each of the following series (which do converge). Simplify.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{9^{n-1}(2 n+1)!}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}} \quad$ hint: $3=(\sqrt{3})^{2}$
(d) $-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\ldots$
(e) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2 n}}{4!(2 n)!}$
(f) $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-\ldots$
8. [15 Points] Do not just write a formula. You do not need to state the Radius. Your answers should all be in Sigma notation $\sum_{n=0}^{\infty}$ here.

You may use the fact that $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ without extra justification.
(a) Demonstrate one method to compute the MacLaurin Series for $F(x)=\sin x$.
(b) Demonstrate a second, different, method to compute the MacLaurin Series for $F(x)=\sin x$.
(c) Demonstrate a third, different, method to compute the MacLaurin Series for $F(x)=\sin x$. Hint: yes, you should solve for $+C$.
9. [8 Points] Consider the Parametric Curve given by $x=(\arctan t)-t$ and $y=2 \sinh ^{-1} t$.

Compute the Arclength of this parametric curve for $0 \leq t \leq \sqrt{3}$. Hint: $\quad \frac{d}{d x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{1+x^{2}}}$

OPTIONAL, Just for Fun you can turn it in if you want to
Compute $\lim _{x \rightarrow 0} \frac{x e^{x}-\sin x}{\ln (1+x)-\arctan x}$ in two ways: using L'Hôpital's Rule and then using Series.

